Udemy - XAI Explainable AI with InterpretML - Notebooks - Python

dkmdkm

U P L O A D E R
fed389858e5e4e45595d70cb2210beeb.webp

Free Download Udemy - XAI Explainable AI with InterpretML - Notebooks - Python
Published 4/2025
Created by Kishan Tongrao
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 37 Lectures ( 4h 54m ) | Size: 2.13 GB

Harnessing Explainable AI with InterpretML: Key Techniques in Model Interpretation, Feature Importance
What you'll learn
XAI Explainable AI
InterpretML Microsoft Library to do XAI
Linear Regression, Logistic Regression, APLR, Decision Tree, EBR, Random Forest, Shap Kernel, Lime Tabular, Partial Dependence, Morries Sensitivity Method
Shap Tree
Requirements
Basics of Python and Data Science
Description
Dive into the world of Explainable AI (XAI) with this comprehensive course, "XAI Explainable AI with InterpretML | Notebooks | Python." Designed for data enthusiasts and practitioners, this course introduces the fundamentals of XAI, emphasizing the critical importance of transparency and interpretability in machine learning models. Our key objectives include equipping you with practical skills to demystify complex models and enhance decision-making processes effectively.Through hands-on examples, you'll explore real-world applications of XAI using Python in Google Colab, with step-by-step guidance on installing and leveraging InterpretML. The course covers a wide range of techniques, starting with Linear Models and advancing to Additive Poisson Linear Regression (APLR) and Tree-based Models. You'll master powerful interpretability tools such as Explainable Boosting Regression (EBR), ShapKernel, and LimeTabular for deep tabular data insights. Additionally, we'll delve into Partial Dependence Plots, Morris Sensitivity Method, and SHAP Tree for robust feature analysis and comprehensive model behavior understanding.By the end, you'll be proficient in interpreting model predictions, identifying feature importance, and ensuring transparency in AI systems. Whether you're a beginner or an experienced data scientist, this course provides the practical tools and advanced techniques to make AI explainable, actionable, and trustworthy using InterpretML in Python. Join us to unlock the transformative power of XAI!
Who this course is for
Who wants to learn XAI Explainable AI using InterpretML Library
Homepage
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!


Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
No Password - Links are Interchangeable
 
Kommentar

06297865f36b5beb8bb02d9f8725133b.jpg

XAI Explainable AI with InterpretML | Notebooks | Python
Published 4/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 4h 54m | Size: 2.13 GB​

Harnessing Explainable AI with InterpretML: Key Techniques in Model Interpretation, Feature Importance

What you'll learn
XAI Explainable AI
InterpretML Microsoft Library to do XAI
Linear Regression, Logistic Regression, APLR, Decision Tree, EBR, Random Forest, Shap Kernel, Lime Tabular, Partial Dependence, Morries Sensitivity Method
Shap Tree

Requirements
Basics of Python and Data Science

Description
Dive into the world of Explainable AI (XAI) with this comprehensive course, "XAI Explainable AI with InterpretML | Notebooks | Python." Designed for data enthusiasts and practitioners, this course introduces the fundamentals of XAI, emphasizing the critical importance of transparency and interpretability in machine learning models. Our key objectives include equipping you with practical skills to demystify complex models and enhance decision-making processes effectively.Through hands-on examples, you'll explore real-world applications of XAI using Python in Google Colab, with step-by-step guidance on installing and leveraging InterpretML. The course covers a wide range of techniques, starting with Linear Models and advancing to Additive Poisson Linear Regression (APLR) and Tree-based Models. You'll master powerful interpretability tools such as Explainable Boosting Regression (EBR), ShapKernel, and LimeTabular for deep tabular data insights. Additionally, we'll delve into Partial Dependence Plots, Morris Sensitivity Method, and SHAP Tree for robust feature analysis and comprehensive model behavior understanding.By the end, you'll be proficient in interpreting model predictions, identifying feature importance, and ensuring transparency in AI systems. Whether you're a beginner or an experienced data scientist, this course provides the practical tools and advanced techniques to make AI explainable, actionable, and trustworthy using InterpretML in Python. Join us to unlock the transformative power of XAI!

Who this course is for
Who wants to learn XAI Explainable AI using InterpretML Library

XSQcCfZb_o.jpg



AusFile
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten