Edureka Practical Deep Learning With Python 2025

0dayddl

U P L O A D E R
541637676_oip.jpg

2.45 GB | 00:07:14 | mp4 | 1920X1080 | 16:9
Genre:eLearning |Language:English


Files Included :
02-course introduction.mp4 (27.98 MB)
03-environment configuration.mp4 (21.81 MB)
01-machine learning vs deep learning.mp4 (34.27 MB)
02-what is deep learning.mp4 (20.31 MB)
03-neural networks.mp4 (42.16 MB)
04-artificial neural network ann.mp4 (24.4 MB)
05-ann types and applications.mp4 (17.78 MB)
06-forward propagation.mp4 (20.61 MB)
07-perceptron.mp4 (30.93 MB)
08-learning rate.mp4 (29.25 MB)
09-what is activation function.mp4 (17.83 MB)
10-activation function and its types.mp4 (23.41 MB)
11-importance of epoch.mp4 (24.78 MB)
12-single layer perceptron define sigmoid function.mp4 (44.01 MB)
13-single layer perceptron decision boundary.mp4 (77.15 MB)
01-limitations of single layered perceptron.mp4 (11.05 MB)
02-multi layered perceptron.mp4 (12.04 MB)
03-what is backpropagation.mp4 (10.26 MB)
04-backpropagation.mp4 (17 MB)
05-demonstration building a simple neural network.mp4 (40.88 MB)
06-demonstration understanding how backpropagation has worked.mp4 (40.45 MB)
07-demonstration handwritten digits classification data preprocessing.mp4 (41.79 MB)
08-demonstration handwritten digits classification designing the model.mp4 (73.21 MB)
09-demonstration handwritten digits classification optimizing the model.mp4 (88.77 MB)
01-summary of deep learning components.mp4 (36.33 MB)
01-limitations of mlp.mp4 (27.91 MB)
02-mlp limitations resolving the issue with cnn.mp4 (21.51 MB)
03-visual cortex and cnn.mp4 (31.61 MB)
04-convolutional layer.mp4 (31.99 MB)
05-working of convolutional layer.mp4 (31.99 MB)
06-demonstration load and preprocess the data.mp4 (42.04 MB)
07-demonstration designing the model.mp4 (52.84 MB)
08-demonstration building the cnn model.mp4 (37.97 MB)
09-demonstration model accuracy.mp4 (21.45 MB)
10-demonstration adding more layers.mp4 (62.39 MB)
11-demonstration building basic cnn model with new parameters.mp4 (78.21 MB)
12-demonstration pre trained model.mp4 (37.38 MB)
01-classification and object detection.mp4 (29.81 MB)
02-introduction to rcnn.mp4 (31.51 MB)
03-r cnn bounding box regression.mp4 (12.46 MB)
04-pre trained model.mp4 (29.04 MB)
05-fast regional cnn.mp4 (32.1 MB)
06-demonstration creating base variables and loading the model.mp4 (37 MB)
08-demonstration svm as a classifier.mp4 (23.4 MB)
01-fast rcnn limitations.mp4 (24.9 MB)
02-advent of faster r cnn.mp4 (25.24 MB)
03-tensorflow hub.mp4 (20.32 MB)
01-summary of cnn in deep learning.mp4 (13.32 MB)
02-summary of faster rcnn.mp4 (22.48 MB)
01-rnn fundamentals.mp4 (20.5 MB)
02-rnn architecture.mp4 (22.59 MB)
03-rnn architecture workflow.mp4 (28.92 MB)
04-implementing rnn.mp4 (28.87 MB)
05-demonstration rnn dataset preparation.mp4 (62.04 MB)
06-demonstration rnn building the model.mp4 (62.37 MB)
01-basics of lstm.mp4 (28.36 MB)
02-lstm structure.mp4 (24.24 MB)
03-forget gate and input gate.mp4 (20.87 MB)
04-output gate.mp4 (14.09 MB)
05-importance of lstm architecture.mp4 (23.04 MB)
06-types of lstm.mp4 (19.16 MB)
07-demonstration next word prediction processing the corpus.mp4 (50.16 MB)
08-demonstration next word prediction layers.mp4 (58.92 MB)
09-demonstration next word prediction model compilation and prediction.mp4 (96.56 MB)
01-improving a model.mp4 (32.93 MB)
02-model optimization.mp4 (21.83 MB)
03-using adam optimizer.mp4 (31.96 MB)
04-model compilation.mp4 (14.37 MB)
05-model compilation with popular frameworks.mp4 (27.34 MB)
06-demonstration model compilation preparing the dataset.mp4 (55.53 MB)
07-demonstration building and compiling model.mp4 (46.26 MB)
08-demonstration from rmsprop to adam.mp4 (45.17 MB)
01-summary of deep learning with rnn and lstm with model optimization.mp4 (32.88 MB)
01-course summary for practical deep learning with python.mp4 (23.39 MB)
]
Screenshot
Hl1pfsx0_o.jpg

rYt5B1d8_o.jpg

Ow7oRL5X_o.jpg

nbOtBozs_o.jpg

gIP45fCq_o.jpg

rCbaH3rJ_o.jpg

SBpOPKrt_o.jpg

sT1FMAz3_o.jpg

R7OT7kAn_o.jpg

shbftrTF_o.jpg

SvJamsOl_o.jpg

jTlJvChZ_o.jpg

4ILpcKxX_o.jpg



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar
539499712_359020115_tuto.jpg

2.66 GB | 7min 14s | mp4 | 1920X1080 | 16:9
Genre:eLearning |Language:English


Files Included :
FileName :02-course introduction.mp4 | Size: (27.98 MB)
FileName :03-environment configuration.mp4 | Size: (21.81 MB)
FileName :01-machine learning vs deep learning.mp4 | Size: (34.27 MB)
FileName :02-what is deep learning.mp4 | Size: (20.31 MB)
FileName :03-neural networks.mp4 | Size: (42.16 MB)
FileName :04-artificial neural network ann.mp4 | Size: (24.4 MB)
FileName :05-ann types and applications.mp4 | Size: (17.78 MB)
FileName :06-forward propagation.mp4 | Size: (20.61 MB)
FileName :07-perceptron.mp4 | Size: (30.93 MB)
FileName :08-learning rate.mp4 | Size: (29.25 MB)
FileName :09-what is activation function.mp4 | Size: (17.83 MB)
FileName :10-activation function and its types.mp4 | Size: (23.41 MB)
FileName :11-importance of epoch.mp4 | Size: (24.78 MB)
FileName :12-single layer perceptron define sigmoid function.mp4 | Size: (44.01 MB)
FileName :13-single layer perceptron decision boundary.mp4 | Size: (77.15 MB)
FileName :01-limitations of single layered perceptron.mp4 | Size: (11.05 MB)
FileName :02-multi layered perceptron.mp4 | Size: (12.04 MB)
FileName :03-what is backpropagation.mp4 | Size: (10.26 MB)
FileName :04-backpropagation.mp4 | Size: (17 MB)
FileName :05-demonstration building a simple neural network.mp4 | Size: (40.88 MB)
FileName :06-demonstration understanding how backpropagation has worked.mp4 | Size: (40.45 MB)
FileName :07-demonstration handwritten digits classification data preprocessing.mp4 | Size: (41.79 MB)
FileName :08-demonstration handwritten digits classification designing the model.mp4 | Size: (73.21 MB)
FileName :09-demonstration handwritten digits classification optimizing the model.mp4 | Size: (88.77 MB)
FileName :01-summary of deep learning components.mp4 | Size: (36.33 MB)
FileName :01-limitations of mlp.mp4 | Size: (27.91 MB)
FileName :02-mlp limitations resolving the issue with cnn.mp4 | Size: (21.51 MB)
FileName :03-visual cortex and cnn.mp4 | Size: (31.61 MB)
FileName :04-convolutional layer.mp4 | Size: (31.99 MB)
FileName :05-working of convolutional layer.mp4 | Size: (31.99 MB)
FileName :06-demonstration load and preprocess the data.mp4 | Size: (42.04 MB)
FileName :07-demonstration designing the model.mp4 | Size: (52.84 MB)
FileName :08-demonstration building the cnn model.mp4 | Size: (37.97 MB)
FileName :09-demonstration model accuracy.mp4 | Size: (21.45 MB)
FileName :10-demonstration adding more layers.mp4 | Size: (62.39 MB)
FileName :11-demonstration building basic cnn model with new parameters.mp4 | Size: (78.21 MB)
FileName :12-demonstration pre trained model.mp4 | Size: (37.38 MB)
FileName :01-classification and object detection.mp4 | Size: (29.81 MB)
FileName :02-introduction to rcnn.mp4 | Size: (31.51 MB)
FileName :03-r cnn bounding box regression.mp4 | Size: (12.46 MB)
FileName :04-pre trained model.mp4 | Size: (29.04 MB)
FileName :05-fast regional cnn.mp4 | Size: (32.1 MB)
FileName :06-demonstration creating base variables and loading the model.mp4 | Size: (37 MB)
FileName :07-demonstration training the model and visualizing the predictions.mp4 | Size: (53.63 MB)
FileName :08-demonstration svm as a classifier.mp4 | Size: (23.4 MB)
FileName :01-fast rcnn limitations.mp4 | Size: (24.9 MB)
FileName :02-advent of faster r cnn.mp4 | Size: (25.24 MB)
FileName :03-tensorflow hub.mp4 | Size: (20.32 MB)
FileName :04-demonstration object detection with faster rcnn pretrained model setup.mp4 | Size: (74.66 MB)
FileName :05-demonstration object detection with faster rcnn building the model.mp4 | Size: (82.91 MB)
FileName :01-summary of cnn in deep learning.mp4 | Size: (13.32 MB)
FileName :02-summary of faster rcnn.mp4 | Size: (22.48 MB)
FileName :01-rnn fundamentals.mp4 | Size: (20.5 MB)
FileName :02-rnn architecture.mp4 | Size: (22.59 MB)
FileName :03-rnn architecture workflow.mp4 | Size: (28.92 MB)
FileName :04-implementing rnn.mp4 | Size: (28.87 MB)
FileName :05-demonstration rnn dataset preparation.mp4 | Size: (62.04 MB)
FileName :06-demonstration rnn building the model.mp4 | Size: (62.37 MB)
FileName :01-basics of lstm.mp4 | Size: (28.36 MB)
FileName :02-lstm structure.mp4 | Size: (24.24 MB)
FileName :03-forget gate and input gate.mp4 | Size: (20.87 MB)
FileName :04-output gate.mp4 | Size: (14.09 MB)
FileName :05-importance of lstm architecture.mp4 | Size: (23.04 MB)
FileName :06-types of lstm.mp4 | Size: (19.16 MB)
FileName :07-demonstration next word prediction processing the corpus.mp4 | Size: (50.16 MB)
FileName :08-demonstration next word prediction layers.mp4 | Size: (58.92 MB)
FileName :09-demonstration next word prediction model compilation and prediction.mp4 | Size: (96.56 MB)
FileName :01-improving a model.mp4 | Size: (32.93 MB)
FileName :02-model optimization.mp4 | Size: (21.83 MB)
FileName :03-using adam optimizer.mp4 | Size: (31.96 MB)
FileName :04-model compilation.mp4 | Size: (14.37 MB)
FileName :05-model compilation with popular frameworks.mp4 | Size: (27.34 MB)
FileName :06-demonstration model compilation preparing the dataset.mp4 | Size: (55.53 MB)
FileName :07-demonstration building and compiling model.mp4 | Size: (46.26 MB)
FileName :08-demonstration from rmsprop to adam.mp4 | Size: (45.17 MB)
FileName :01-summary of deep learning with rnn and lstm with model optimization.mp4 | Size: (32.88 MB)
FileName :01-course summary for practical deep learning with python.mp4 | Size: (23.39 MB)
]
Screenshot
5wXRqA0a_o.jpg


AusFile
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
TurboBit
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

 
Kommentar
541637676_oip.jpg

1.55 GB | 00:07:14 | mp4 | 1280X720 | 16:9
Genre:eLearning |Language:English


Files Included :
02 course-introduction.mp4 (16.72 MB)
03 environment-configuration.mp4 (11.19 MB)
01 machine-learning-vs-deep-learning.mp4 (20.38 MB)
02 what-is-deep-learning.mp4 (11.82 MB)
03 neural-networks.mp4 (24.43 MB)
04 artificial-neural-network-ann.mp4 (16.15 MB)
05 ann-types-and-applications.mp4 (11.34 MB)
06 forward-propagation.mp4 (13.19 MB)
07 perceptron.mp4 (20.54 MB)
08 learning-rate.mp4 (19.98 MB)
09 what-is-activation-function.mp4 (11.81 MB)
10 activation-function-and-its-types.mp4 (14.65 MB)
11 importance-of-epoch.mp4 (15.95 MB)
12 single-layer-perceptron-define-sigmoid-function.mp4 (25.28 MB)
13 single-layer-perceptron-decision-boundary.mp4 (42.76 MB)
01 limitations-of-single-layered-perceptron.mp4 (6.86 MB)
02 multi-layered-perceptron.mp4 (7.72 MB)
03 what-is-backpropagation.mp4 (6.49 MB)
04 backpropagation.mp4 (10.45 MB)
05 demonstration-building-a-simple-neural-network.mp4 (20.81 MB)
06 demonstration-understanding-how-backpropagation-has-worked.mp4 (22.74 MB)
07 demonstration-handwritten-digits-classification-data-preprocessing.mp4 (22.63 MB)
08 demonstration-handwritten-digits-classification-designing-the-model.mp4 (38.07 MB)
09 demonstration-handwritten-digits-classification-optimizing-the-model.mp4 (44.62 MB)
01 summary-of-deep-learning-components.mp4 (21.66 MB)
01 limitations-of-mlp.mp4 (16.37 MB)
02 mlp-limitations-resolving-the-issue-with-cnn.mp4 (12.96 MB)
03 visual-cortex-and-cnn.mp4 (20.59 MB)
04 convolutional-layer.mp4 (20.38 MB)
05 working-of-convolutional-layer.mp4 (20.38 MB)
06 demonstration-load-and-preprocess-the-data.mp4 (24.16 MB)
07 demonstration-designing-the-model.mp4 (29.4 MB)
08 demonstration-building-the-cnn-model.mp4 (22.04 MB)
09 demonstration-model-accuracy.mp4 (12.09 MB)
10 demonstration-adding-more-layers.mp4 (34.12 MB)
11 demonstration-building-basic-cnn-model-with-new-parameters.mp4 (42.94 MB)
12 demonstration-pre-trained-model.mp4 (21.2 MB)
01 classification-and-object-detection.mp4 (19.19 MB)
02 introduction-to-rcnn.mp4 (19.12 MB)
03 r-cnn-bounding-box-regression.mp4 (7.65 MB)
04 pre-trained-model.mp4 (18.68 MB)
05 fast-regional-cnn.mp4 (17.77 MB)
06 demonstration-creating-base-variables-and-loading-the-model.mp4 (20.23 MB)
07 demonstration-training-the-model-and-visualizing-the-predictions.mp4 (29.08 MB)
08 demonstration-svm-as-a-classifier.mp4 (13.57 MB)
01 fast-rcnn-limitations.mp4 (16 MB)
02 advent-of-faster-r-cnn.mp4 (17.05 MB)
03 tensorflow-hub.mp4 (12.52 MB)
04 demonstration-object-detection-with-faster-rcnn-pretrained-model-setup.mp4 (41.06 MB)
05 demonstration-object-detection-with-faster-rcnn-building-the-model.mp4 (43.66 MB)
01 summary-of-cnn-in-deep-learning.mp4 (8.47 MB)
02 summary-of-faster-rcnn.mp4 (13.77 MB)
01 rnn-fundamentals.mp4 (13.83 MB)
02 rnn-architecture.mp4 (13.94 MB)
03 rnn-architecture-workflow.mp4 (17.74 MB)
04 implementing-rnn.mp4 (19.15 MB)
05 demonstration-rnn-dataset-preparation.mp4 (33.66 MB)
06 demonstration-rnn-building-the-model.mp4 (34.82 MB)
01 basics-of-lstm.mp4 (18.39 MB)
02 lstm-structure.mp4 (16.28 MB)
03 forget-gate-and-input-gate.mp4 (14.39 MB)
04 output-gate.mp4 (8.74 MB)
05 importance-of-lstm-architecture.mp4 (14.33 MB)
06 types-of-lstm.mp4 (12.05 MB)
07 demonstration-next-word-prediction-processing-the-corpus.mp4 (28.32 MB)
08 demonstration-next-word-prediction-layers.mp4 (32.79 MB)
09 demonstration-next-word-prediction-model-compilation-and-prediction.mp4 (52.14 MB)
01 improving-a-model.mp4 (20.63 MB)
02 model-optimization.mp4 (13.69 MB)
03 using-adam-optimizer.mp4 (20.41 MB)
04 model-compilation.mp4 (9.68 MB)
05 model-compilation-with-popular-frameworks.mp4 (16.32 MB)
06 demonstration-model-compilation-preparing-the-dataset.mp4 (29.98 MB)
07 demonstration-building-and-compiling-model.mp4 (25.61 MB)
08 demonstration-from-rmsprop-to-adam.mp4 (24.64 MB)
01 summary-of-deep-learning-with-rnn-and-lstm-with-model-optimization.mp4 (19.64 MB)
01 course-summary-for-practical-deep-learning-with-python.mp4 (14.05 MB)
]
Screenshot
gXkEHAc7_o.jpg

nEe3HO5n_o.jpg

BQTRefDm_o.jpg

OHaKyU1H_o.jpg

nELnduni_o.jpg

hqGV3CBI_o.jpg

maMjMCi3_o.jpg

5E9AbTEB_o.jpg

GdlS2hmC_o.jpg

wyNK8HYG_o.jpg

egpp8X8i_o.jpg

pwPK87IH_o.jpg

aqZdIAvg_o.jpg

nl3331Vn_o.jpg

KpsBEQzY_o.jpg

jhS1K5Er_o.jpg

MlFJTo5h_o.jpg

8ouScTA0_o.jpg

0eM92aXm_o.jpg

0GvFv5W9_o.jpg

zPPY1Tl1_o.jpg

voayTa7Y_o.jpg

lHrCdLIk_o.jpg



RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
TurboBit
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten