Data Wrangling and Preprocessing in Data Science A Practical Guide

booksz

U P L O A D E R
0c775d75557a5453028f54ebbcc01a48.webp

Free Download Data Wrangling and Preprocessing in Data Science: A Practical Guide : From Raw Data to Analysis-Ready Datasets by Ahmed Khorshid
English | December 31, 2024 | ISBN: N/A | ASIN: B0DRZZ4Q94 | 205 pages | EPUB | 4.67 Mb
This book offers a comprehensive and practical guide to the essential techniques of data wrangling and preprocessing, which are crucial for any successful data science project. It adopts a step-by-step approach to transforming raw, often messy, data into a clean, structured format that is ready for analysis. The book emphasizes the practical skills needed to ensure data quality and consistency across a variety of data types, including numerical, text, and time series data.You will learn how to:●

Collect and Import Data: Discover effective methods for sourcing data from various locations such as relational databases, APIs, files, and through web scraping. This section covers best practices for ensuring that the initial data collection is robust and well-documented.●
Clean Data: Master techniques for addressing common issues such as missing values, duplicate entries, and inconsistencies in the data. You'll learn how to make informed decisions about whether to remove, impute, or transform problematic data.●
Transform Data: Explore methods for scaling, normalizing, and encoding categorical variables. These techniques ensure that your data is in the proper format for modeling and analysis.●
Engineer and Select Features: Understand how to create new, informative features from existing data and select the most relevant ones to enhance the performance of your models. This process is vital for reducing complexity and improving the predictive power of your data.●
Reshape and Aggregate Data: Develop skills in restructuring data to enable more effective analysis. You'll learn how to pivot tables, melt data into long formats, and aggregate data to generate meaningful summaries.●
Handle Outliers and Anomalies: Learn to identify and address unusual data points that can negatively impact your results. The book covers various statistical and visualization techniques for detecting and managing outliers and anomalies.●
Work with Text Data: Gain expertise in preprocessing text data using techniques such as tokenization, stop word removal, stemming, and lemmatization. This is a core skill for anyone working with unstructured data.●
Automate Workflows: Discover strategies for automating your data wrangling workflows using scripting and various tools to improve efficiency and consistency. The book emphasizes creating modular and reusable code.The book also provides hands-on examples utilizing popular Python libraries like Pandas and NumPy, and it explores data wrangling techniques within SQL, R, and Apache Spark to ensure you are familiar with a variety of environments. This resource will be invaluable for both beginners and experienced data scientists, equipping you with the practical skills necessary to tackle real-world data challenges. The book also contains a glossary of data wrangling terms to assist you along the way.



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Links are Interchangeable - Single Extraction
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten