Coursera - Mastering Ai: Neural Nets, Vision System, Speech Recognition Specialization

lesedev317

U P L O A D E R

b95220f6dded4cd6706137ea71d9e556.jpg

Coursera - Mastering Ai: Neural Nets, Vision System, Speech Recognition Specialization
Released 2/2025
By Edureka
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + subtitle | Duration: 323 Lessons ( 26h 16m ) | Size: 6.76 GB​


Master AI to Build Intelligent Systems and Drive Innovation
What you'll learn
Analyze and apply fundamental Python functions and methods.
Utilize and apply various machine learning models effectively.
Design and optimize neural networks for AI applications.
Explain and implement image, video, and audio processing methods.
Skills you'll gain
Association Rule Learning
Model Optimization
Computer Vision
Statistical Inference
Python (Programming Language)
Deep Learning
Recommendation Engines
Machine Learning
Artificial Intelligence
Model Evaluation
Images and Video Processing
Data Manipulation with NumPy and Pandas
Association Rule Mining and Recommendation
Data Analysis
Supervised Learning
Linear Regression
Data Visualization
Statistical Analysis
Data Manipulation
Implementing Optimizing Algorithms
Manipulating complex datasets
Analyzing different types frameworks
Building SLP and MLP models
Creating models with different algorithms
Image and Video Processing with OpenCV
Speech Recognition
Speech Analysis and Processing
Morphological Image Operations
Begin your journey with the Mastering AI specialization, designed for both aspiring and experienced professionals. This program equips you with essential skills in artificial intelligence, machine learning, and deep learning to develop cutting-edge solutions.
Explore key concepts such as neural networks, statistical foundations, predictive modeling, and AI-driven computer vision and speech recognition. Through hands-on projects and real-world case studies, gain the expertise to build intelligent models, optimize deep learning architectures, and apply AI to solve complex challenges.
The specialization comprises four comprehensive courses
Python and Statistics Foundations: Build a strong foundation in Python programming, probability, and statistical analysis for AI applications.
Applied Machine Learning with Python: Learn to develop, train, and optimize machine learning models to extract insights and drive AI solutions.
Practical Deep Learning with Python: Master deep learning techniques, neural networks, and advanced model optimization for real-world AI applications.
AI Applications: Computer Vision and Speech Recognition: Explore AI-driven image processing and speech recognition technologies.
By the end of this program, you'll be prepared to design and implement AI solutions, harness the power of deep learning, and advance your career in artificial intelligence. Join us to unlock the full potential of AI and drive innovation across industries!
Applied Learning Project
Learners will acquire proficiency in building complex machine learning and deep learning models to solve challenging problems while demonstrating a high level of problem-solving skills. Learners will learn to program using Python, clean and transform data using various data preprocessing methods, and apply statistical and inferential modeling.
Learners will also gain expertise in different machine learning techniques. Additionally, they will explore deep learning techniques such as Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Faster R-CNN, and other advanced architectures.
The curriculum encompasses knowledge of AI processing for video, audio, and speech recognition. Learners will progress from basic to advanced programming concepts for handling AI-related tasks. Their ability to apply acquired knowledge will be demonstrated through individual projects, serving as the culmination of their educational journey.

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar
541637676_oip.jpg

4.66 GB | 00:00:15 | mp4 | 3840X2160 | 16:9
Genre:eLearning |Language:English


Files Included :
02 course-introduction.mp4 (13.11 MB)
04 speech-recognition-technology.mp4 (17.67 MB)
05 computer-vision-application.mp4 (21.26 MB)
07 ai-responsibility-pyramid.mp4 (18.98 MB)
09 evolution-of-speech-analysis.mp4 (15.26 MB)
10 what-is-opencv.mp4 (17.82 MB)
01 installing-opencv-on-windows.mp4 (11.09 MB)
01 operations-on-opencv.mp4 (8.79 MB)
04 demonstration-gaussian-blur.mp4 (21.56 MB)
05 demonstration-edge-detection-and-conversion.mp4 (21.36 MB)
06 demonstration-image-thresholding-binary-image.mp4 (17.13 MB)
07 demonstration-different-methods-of-thresholding.mp4 (24.79 MB)
08 demonstration-practical-use-cases.mp4 (10.48 MB)
09 what-is-adaptive-thresholding.mp4 (12.3 MB)
10 demonstration-of-global-adaptive-threshold.mp4 (14.6 MB)
01 morphological-operations.mp4 (15.41 MB)
02 morphological-operations-in-opencv.mp4 (11.78 MB)
03 demonstration-opening-dilation-and-erosion.mp4 (23.22 MB)
05 blackhat-and-whitehat-transformations.mp4 (15.11 MB)
06 demonstration-whitehat-tophat.mp4 (13.87 MB)
07 demonstration-blackhat.mp4 (18.22 MB)
01 summary-of-computer-vision-with-opencv.mp4 (23.1 MB)
01 video-processing.mp4 (8.46 MB)
05 demonstration-saving-the-frames.mp4 (32.23 MB)
06 demonstration-loading-the-data.mp4 (20.23 MB)
08 demonstration-histogram-matching.mp4 (27.07 MB)
11 demonstration-differences-in-images.mp4 (15.59 MB)
01 introduction-to-speech-audio-data.mp4 (11.02 MB)
03 processing-speech.mp4 (18.26 MB)
04 speech-production.mp4 (20.63 MB)
05 difficulties-in-analyzing-speech.mp4 (17.91 MB)
06 working-of-sound-waves.mp4 (14.68 MB)
07 adc-and-sample-rate-bit-rate.mp4 (12.01 MB)
09 demonstration-generating-sound.mp4 (33.68 MB)
10 demonstration-spectrogram.mp4 (27.63 MB)
12 summary-of-audio-file-analysis.mp4 (7.38 MB)
01 human-speech.mp4 (18.91 MB)
02 speech-waveform.mp4 (18.02 MB)
03 digital-signal-processing.mp4 (18.18 MB)
11 tremor-detection.mp4 (6.51 MB)
01 Traffic.mp4 (185.81 MB)
01 highway.mp4 (4.98 MB)
02 course-introduction.mp4 (14.8 MB)
03 machine-learning-in-industry.mp4 (15.59 MB)
04 how-companies-use-machine-learning.mp4 (18.89 MB)
01 machine-learning-process.mp4 (14.84 MB)
02 steps-in-machine-learning.mp4 (13.79 MB)
03 types-of-machine-learning.mp4 (21.81 MB)
01 introduction-to-linear-regression.mp4 (18.61 MB)
02 real-life-examples.mp4 (22.05 MB)
03 calculating-ols.mp4 (40.38 MB)
04 equation-of-ols.mp4 (16.29 MB)
05 assumptions-in-linear-regression.mp4 (22.41 MB)
06 demonstration-setting-up-the-model.mp4 (23.13 MB)
07 calculating-r-square-and-rmse.mp4 (28.36 MB)
08 residual-plot-and-q-q-plot.mp4 (9.96 MB)
09 cooks-distance.mp4 (22.59 MB)
10 real-life-examples-of-logistic-regression.mp4 (21.03 MB)
11 what-is-logistic-regression.mp4 (26.84 MB)
12 cost-function.mp4 (13.93 MB)
13 assumptions-in-logistic-regression.mp4 (19.09 MB)
14 demonstration-of-logistic-regression-transforming-data.mp4 (29.9 MB)
15 demonstration-of-logistic-regression-developing-the-model.mp4 (18.35 MB)
01 confusion-matrix.mp4 (12.22 MB)
02 example-for-calculating-confusion-matrix.mp4 (32.97 MB)
03 conditions-for-over-fitting-and-under-fitting.mp4 (14.45 MB)
04 overfitting-and-underfitting.mp4 (30.5 MB)
05 performance-metrics-mse-rmse-mae-mape.mp4 (26.41 MB)
06 r-square-rmsle-and-adjusted-r-square.mp4 (19.11 MB)
07 working-of-r-square.mp4 (23.97 MB)
08 significance-of-r-square.mp4 (29.25 MB)
01 summary-for-inception-of-machine-learning.mp4 (9.74 MB)
01 classification-in-machine-learning.mp4 (19.62 MB)
02 what-is-decision-tree.mp4 (32.56 MB)
03 decision-tree-entropy-and-information-gain.mp4 (29.62 MB)
04 step-by-step-building-of-decision-tree.mp4 (38.71 MB)
05 pruning-in-decision-tree.mp4 (26.68 MB)
06 demonstration-importing-data.mp4 (26.8 MB)
08 demonstration-importance-of-features.mp4 (14.1 MB)
09 demonstration-production-ready-random-forest.mp4 (10.99 MB)
10 demonstration-hyperparameter-tuning.mp4 (17.72 MB)
01 what-is-svm.mp4 (20.1 MB)
02 terminologies-in-svm.mp4 (42.91 MB)
03 hinge-loss-function-and-other-parameters.mp4 (43.01 MB)
04 demonstration-of-svm-exploring-the-data.mp4 (17.08 MB)
06 what-is-naive-bayes.mp4 (11.9 MB)
07 working-of-naive-bayes-bayes-theorem.mp4 (23.17 MB)
08 example-of-naive-bayes-algorithm.mp4 (37.67 MB)
09 demonstration-of-naive-bayes-code.mp4 (21.04 MB)
10 working-of-knn.mp4 (17.86 MB)
11 example-of-knn-algorithm.mp4 (23.3 MB)
12 demonstration-of-knn-setting-up-the-model.mp4 (28.2 MB)
14 demonstration-of-knn-creating-classifier.mp4 (15.24 MB)
01 dimensionality-reduction.mp4 (31.58 MB)
02 introduction-to-pca.mp4 (27.97 MB)
03 applying-pca.mp4 (23.87 MB)
04 eigen-values-and-eigen-vectors.mp4 (29.48 MB)
05 demonstration-initializing-pca.mp4 (13.78 MB)
07 demonstration-implementing-optimal-pca.mp4 (25.04 MB)
08 working-of-lda.mp4 (29.56 MB)
09 demonstration-of-lda.mp4 (32.12 MB)
01 summary-for-machine-learning-algorithms.mp4 (10.05 MB)
01 what-are-association-rules.mp4 (27.58 MB)
02 apriori-algorithm.mp4 (20.99 MB)
03 demonstrating-apriori-algorithm.mp4 (48.01 MB)
01 what-are-recommendation-engine.mp4 (22.26 MB)
02 cbf.mp4 (21.73 MB)
04 demonstration-testing-the-model.mp4 (27.23 MB)
01 course-summary-for-applied-machine-learning-with-python.mp4 (11.91 MB)
02 course-introduction.mp4 (16.72 MB)
03 environment-configuration.mp4 (11.19 MB)
01 machine-learning-vs-deep-learning.mp4 (20.38 MB)
02 what-is-deep-learning.mp4 (11.82 MB)
03 neural-networks.mp4 (24.43 MB)
04 artificial-neural-network-ann.mp4 (16.15 MB)
05 ann-types-and-applications.mp4 (11.34 MB)
06 forward-propagation.mp4 (13.19 MB)
07 perceptron.mp4 (20.54 MB)
08 learning-rate.mp4 (19.98 MB)
09 what-is-activation-function.mp4 (11.81 MB)
10 activation-function-and-its-types.mp4 (14.65 MB)
11 importance-of-epoch.mp4 (15.95 MB)
12 single-layer-perceptron-define-sigmoid-function.mp4 (25.28 MB)
13 single-layer-perceptron-decision-boundary.mp4 (42.76 MB)
01 limitations-of-single-layered-perceptron.mp4 (6.86 MB)
02 multi-layered-perceptron.mp4 (7.72 MB)
03 what-is-backpropagation.mp4 (6.49 MB)
04 backpropagation.mp4 (10.45 MB)
05 demonstration-building-a-simple-neural-network.mp4 (20.81 MB)
01 summary-of-deep-learning-components.mp4 (21.66 MB)
01 limitations-of-mlp.mp4 (16.37 MB)
03 visual-cortex-and-cnn.mp4 (20.59 MB)
04 convolutional-layer.mp4 (20.38 MB)
05 working-of-convolutional-layer.mp4 (20.38 MB)
07 demonstration-designing-the-model.mp4 (29.4 MB)
08 demonstration-building-the-cnn-model.mp4 (22.04 MB)
09 demonstration-model-accuracy.mp4 (12.09 MB)
10 demonstration-adding-more-layers.mp4 (34.12 MB)
12 demonstration-pre-trained-model.mp4 (21.2 MB)
03 tensorflow-hub.mp4 (12.52 MB)
01 summary-of-cnn-in-deep-learning.mp4 (8.47 MB)
02 summary-of-faster-rcnn.mp4 (13.77 MB)
01 rnn-fundamentals.mp4 (13.83 MB)
02 rnn-architecture.mp4 (13.94 MB)
04 implementing-rnn.mp4 (19.15 MB)
01 basics-of-lstm.mp4 (18.39 MB)
02 lstm-structure.mp4 (16.28 MB)
03 forget-gate-and-input-gate.mp4 (14.39 MB)
04 output-gate.mp4 (8.74 MB)
05 importance-of-lstm-architecture.mp4 (14.33 MB)
06 types-of-lstm.mp4 (12.05 MB)
08 demonstration-next-word-prediction-layers.mp4 (32.79 MB)
01 improving-a-model.mp4 (20.63 MB)
02 model-optimization.mp4 (13.69 MB)
03 using-adam-optimizer.mp4 (20.41 MB)
04 model-compilation.mp4 (9.68 MB)
01 course-summary-for-practical-deep-learning-with-python.mp4 (14.05 MB)
01 specialization-introduction.mp4 (16.16 MB)
03 course-introduction.mp4 (11.76 MB)
06 programming-language-and-myths.mp4 (20.15 MB)
07 python-for-ai-ml-code-simpliCity.mp4 (15.97 MB)
08 python-for-ai-ml-ease-of-learning.mp4 (15.14 MB)
09 python-tokens-types.mp4 (12.4 MB)
10 literals.mp4 (26.16 MB)
11 operators-basic-operators.mp4 (46.16 MB)
12 operators-membership-and-identity-operators.mp4 (22.48 MB)
01 explaining-data-types-in-python.mp4 (8.07 MB)
02 demonstration-of-data-types-numeric-sequence-and-mapping.mp4 (35.73 MB)
01 executing-conditional-statement.mp4 (22.98 MB)
02 demonstration-of-if-else-statement.mp4 (15.72 MB)
03 executing-while-loop.mp4 (15.38 MB)
04 demonstration-of-for-loop.mp4 (21.9 MB)
05 looping-multiple-conditions.mp4 (16.23 MB)
01 file-handling.mp4 (18.88 MB)
03 manipulating-files.mp4 (32.13 MB)
04 user-defined-functions.mp4 (30.87 MB)
05 variable-argument-and-variable-keyword-argument.mp4 (18.04 MB)
06 lambda-functions.mp4 (25.16 MB)
07 more-on-functions-and-arguments.mp4 (21.04 MB)
08 modules-in-python.mp4 (13.07 MB)
09 demonstration-of-modules.mp4 (19.7 MB)
01 summary-of-python-essentials.mp4 (7.49 MB)
02 exploring-numpy.mp4 (16.26 MB)
03 numpy-operation.mp4 (32.46 MB)
04 working-with-numpy.mp4 (35.89 MB)
02 pandas-framework.mp4 (20.7 MB)
03 pandas-dataframe-operation.mp4 (33.03 MB)
04 working-with-dataframes-in-pandas.mp4 (26.83 MB)
05 dataframes-with-pandas-operations-and-insights.mp4 (31.97 MB)
06 creating-a-series-in-pandas.mp4 (31.02 MB)
07 working-with-pandas-series.mp4 (22.04 MB)
01 dataframe-data-maniplulation.mp4 (25.83 MB)
02 dataframe-joining.mp4 (33.06 MB)
03 dataframe-grouping-the-data.mp4 (23.43 MB)
04 dataframe-data-cleaning.mp4 (22.07 MB)
05 dataframe-data-adjusting.mp4 (23.95 MB)
03 matplotlib-library.mp4 (21.62 MB)
04 plotting-charts-with-matplotlib.mp4 (19.97 MB)
05 plotting-histogram-and-box-plot.mp4 (11.14 MB)
06 plotting-multiple-charts.mp4 (29.4 MB)
07 introduction-to-seaborn-scatter-plot.mp4 (27.49 MB)
08 basic-charts-in-seaborn.mp4 (24.06 MB)
09 seaborn-heatmap-manipulation.mp4 (9.41 MB)
10 seaborn-flights-dataset.mp4 (18.83 MB)
11 seaborn-gaining-insights-in-flight-data.mp4 (23.94 MB)
12 visualizing-charts-with-plotly.mp4 (19.43 MB)
13 customizing-different-charts-in-plotly.mp4 (25.08 MB)
01 summary-exploring-numpy-and-pandas-in-python.mp4 (6.5 MB)
02 what-is-statistics.mp4 (19.13 MB)
03 measures-of-central-tendency.mp4 (22.62 MB)
04 managing-statistical-data.mp4 (22.04 MB)
05 exploring-and-analyzing-data.mp4 (14.78 MB)
01 measures-of-dispersion.mp4 (20.74 MB)
02 dispersion-demonstration.mp4 (25.14 MB)
03 application-of-dispersion-in-large-data.mp4 (8.37 MB)
02 probability-sample-space-and-events.mp4 (17.41 MB)
03 need-for-probability.mp4 (10.87 MB)
04 types-of-probability.mp4 (15.45 MB)
05 marginal-and-joint-probability-demonstration.mp4 (17.61 MB)
06 conditional-probability-demonstration.mp4 (18.8 MB)
02 what-is-hypothesis-testing.mp4 (20.23 MB)
03 steps-for-hypothesis-testing.mp4 (12.71 MB)
04 null-and-alternate-hypothesis.mp4 (20.5 MB)
05 statistical-test-interpretation.mp4 (22.22 MB)
06 one-tailed-and-two-tailed-test.mp4 (18.67 MB)
07 hypothesis-testing-demonstration.mp4 (23.02 MB)
08 margin-of-error-and-confidence-interval-demonstration.mp4 (35.07 MB)
01 summary-statistical-analysis-with-python.mp4 (7.98 MB)
01 course-summary-python-and-statistics-foundations.mp4 (10.54 MB)
]
Screenshot
NHVEg3hn_o.jpg

tQLoX9eB_o.jpg

sO0Eyhxe_o.jpg

ZvUR19YB_o.jpg

P1ckqsv4_o.jpg

QOa0tZZ7_o.jpg

cvvH1yhY_o.jpg

u9XqEPZd_o.jpg

BQHrL8lC_o.jpg

BNPOexef_o.jpg

dksLuDxR_o.jpg

NJFS0LrC_o.jpg

XhnfNLMB_o.jpg

MEGf9SC9_o.jpg

gzL6hCJi_o.jpg

jRmxrrzi_o.jpg

xS5Fq2vE_o.jpg

OqUukUfj_o.jpg

KE85IYMP_o.jpg

GFLMpVgO_o.jpg

JV4XzW1r_o.jpg

CYjWLikt_o.jpg

ZcEMFYMA_o.jpg

GCjheK6c_o.jpg

0IIXYcO6_o.jpg

GEmlX67z_o.jpg

fqdIsEwb_o.jpg

0ckwOpz5_o.jpg

KIEAsnFH_o.jpg

JmbTgdYP_o.jpg

Jb29cLYT_o.jpg

HxR7kRMX_o.jpg

tuJ1x44K_o.jpg

ol0wsNrw_o.jpg

wSkWQBYB_o.jpg

wnNpYFKT_o.jpg

PFABHVpx_o.jpg

7P45EBcw_o.jpg

iW9MZUmv_o.jpg

E9HsBit8_o.jpg

TqftI0gf_o.jpg

VIUr60ON_o.jpg

EtSPw1U1_o.jpg

WdptRNg2_o.jpg

0xfWKuMk_o.jpg

uZB40oIf_o.jpg

34BzYacV_o.jpg

auZW0U0z_o.jpg

K1hCMDR2_o.jpg

X2VgonBk_o.jpg

9E6YH8fX_o.jpg

R1NuxtBr_o.jpg

myuTlNQK_o.jpg

o8I7OU1O_o.jpg

54PTERk8_o.jpg

rM6EwnxE_o.jpg

Jo0C9mhR_o.jpg

CSLGkFES_o.jpg

NaEh3gQt_o.jpg

95Hholqo_o.jpg

pJQ8d5j5_o.jpg

TeVBhLaA_o.jpg

JdtYibSs_o.jpg

EhG78Kow_o.jpg

W6cB2qAs_o.jpg

XL5QXMqw_o.jpg

zZseyEXR_o.jpg

cgKiIgLS_o.jpg

O0M5B0EK_o.jpg

cOfrRUGg_o.jpg

qiLwnqiI_o.jpg

XduYE00b_o.jpg

GvHiLR97_o.jpg

oKP3Fuqt_o.jpg

KEiJ3Dx8_o.jpg

Y8Wju6vW_o.jpg

e5ih0Lvc_o.jpg

lpppuVjr_o.jpg

s7Df7IDI_o.jpg

PuMpoqqs_o.jpg

tH5SyBYt_o.jpg

7TThLOl6_o.jpg

YApyan6h_o.jpg

nRyFepDz_o.jpg



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar
541637676_oip.jpg

4.66 GB | 00:00:15 | mp4 | 3840X2160 | 16:9
Genre:eLearning |Language:English


Files Included :
02 course-introduction.mp4 (13.11 MB)
04 speech-recognition-technology.mp4 (17.67 MB)
05 computer-vision-application.mp4 (21.26 MB)
07 ai-responsibility-pyramid.mp4 (18.98 MB)
09 evolution-of-speech-analysis.mp4 (15.26 MB)
10 what-is-opencv.mp4 (17.82 MB)
01 installing-opencv-on-windows.mp4 (11.09 MB)
01 operations-on-opencv.mp4 (8.79 MB)
04 demonstration-gaussian-blur.mp4 (21.56 MB)
05 demonstration-edge-detection-and-conversion.mp4 (21.36 MB)
06 demonstration-image-thresholding-binary-image.mp4 (17.13 MB)
07 demonstration-different-methods-of-thresholding.mp4 (24.79 MB)
08 demonstration-practical-use-cases.mp4 (10.48 MB)
09 what-is-adaptive-thresholding.mp4 (12.3 MB)
10 demonstration-of-global-adaptive-threshold.mp4 (14.6 MB)
01 morphological-operations.mp4 (15.41 MB)
02 morphological-operations-in-opencv.mp4 (11.78 MB)
03 demonstration-opening-dilation-and-erosion.mp4 (23.22 MB)
05 blackhat-and-whitehat-transformations.mp4 (15.11 MB)
06 demonstration-whitehat-tophat.mp4 (13.87 MB)
07 demonstration-blackhat.mp4 (18.22 MB)
01 summary-of-computer-vision-with-opencv.mp4 (23.1 MB)
01 video-processing.mp4 (8.46 MB)
05 demonstration-saving-the-frames.mp4 (32.23 MB)
06 demonstration-loading-the-data.mp4 (20.23 MB)
08 demonstration-histogram-matching.mp4 (27.07 MB)
11 demonstration-differences-in-images.mp4 (15.59 MB)
01 introduction-to-speech-audio-data.mp4 (11.02 MB)
03 processing-speech.mp4 (18.26 MB)
04 speech-production.mp4 (20.63 MB)
05 difficulties-in-analyzing-speech.mp4 (17.91 MB)
06 working-of-sound-waves.mp4 (14.68 MB)
07 adc-and-sample-rate-bit-rate.mp4 (12.01 MB)
09 demonstration-generating-sound.mp4 (33.68 MB)
10 demonstration-spectrogram.mp4 (27.63 MB)
12 summary-of-audio-file-analysis.mp4 (7.38 MB)
01 human-speech.mp4 (18.91 MB)
02 speech-waveform.mp4 (18.02 MB)
03 digital-signal-processing.mp4 (18.18 MB)
11 tremor-detection.mp4 (6.51 MB)
01 Traffic.mp4 (185.81 MB)
01 highway.mp4 (4.98 MB)
02 course-introduction.mp4 (14.8 MB)
03 machine-learning-in-industry.mp4 (15.59 MB)
04 how-companies-use-machine-learning.mp4 (18.89 MB)
01 machine-learning-process.mp4 (14.84 MB)
02 steps-in-machine-learning.mp4 (13.79 MB)
03 types-of-machine-learning.mp4 (21.81 MB)
01 introduction-to-linear-regression.mp4 (18.61 MB)
02 real-life-examples.mp4 (22.05 MB)
03 calculating-ols.mp4 (40.38 MB)
04 equation-of-ols.mp4 (16.29 MB)
05 assumptions-in-linear-regression.mp4 (22.41 MB)
06 demonstration-setting-up-the-model.mp4 (23.13 MB)
07 calculating-r-square-and-rmse.mp4 (28.36 MB)
08 residual-plot-and-q-q-plot.mp4 (9.96 MB)
09 cooks-distance.mp4 (22.59 MB)
10 real-life-examples-of-logistic-regression.mp4 (21.03 MB)
11 what-is-logistic-regression.mp4 (26.84 MB)
12 cost-function.mp4 (13.93 MB)
13 assumptions-in-logistic-regression.mp4 (19.09 MB)
14 demonstration-of-logistic-regression-transforming-data.mp4 (29.9 MB)
15 demonstration-of-logistic-regression-developing-the-model.mp4 (18.35 MB)
01 confusion-matrix.mp4 (12.22 MB)
02 example-for-calculating-confusion-matrix.mp4 (32.97 MB)
03 conditions-for-over-fitting-and-under-fitting.mp4 (14.45 MB)
04 overfitting-and-underfitting.mp4 (30.5 MB)
05 performance-metrics-mse-rmse-mae-mape.mp4 (26.41 MB)
06 r-square-rmsle-and-adjusted-r-square.mp4 (19.11 MB)
07 working-of-r-square.mp4 (23.97 MB)
08 significance-of-r-square.mp4 (29.25 MB)
01 summary-for-inception-of-machine-learning.mp4 (9.74 MB)
01 classification-in-machine-learning.mp4 (19.62 MB)
02 what-is-decision-tree.mp4 (32.56 MB)
03 decision-tree-entropy-and-information-gain.mp4 (29.62 MB)
04 step-by-step-building-of-decision-tree.mp4 (38.71 MB)
05 pruning-in-decision-tree.mp4 (26.68 MB)
06 demonstration-importing-data.mp4 (26.8 MB)
08 demonstration-importance-of-features.mp4 (14.1 MB)
09 demonstration-production-ready-random-forest.mp4 (10.99 MB)
10 demonstration-hyperparameter-tuning.mp4 (17.72 MB)
01 what-is-svm.mp4 (20.1 MB)
02 terminologies-in-svm.mp4 (42.91 MB)
03 hinge-loss-function-and-other-parameters.mp4 (43.01 MB)
04 demonstration-of-svm-exploring-the-data.mp4 (17.08 MB)
06 what-is-naive-bayes.mp4 (11.9 MB)
07 working-of-naive-bayes-bayes-theorem.mp4 (23.17 MB)
08 example-of-naive-bayes-algorithm.mp4 (37.67 MB)
09 demonstration-of-naive-bayes-code.mp4 (21.04 MB)
10 working-of-knn.mp4 (17.86 MB)
11 example-of-knn-algorithm.mp4 (23.3 MB)
12 demonstration-of-knn-setting-up-the-model.mp4 (28.2 MB)
14 demonstration-of-knn-creating-classifier.mp4 (15.24 MB)
01 dimensionality-reduction.mp4 (31.58 MB)
02 introduction-to-pca.mp4 (27.97 MB)
03 applying-pca.mp4 (23.87 MB)
04 eigen-values-and-eigen-vectors.mp4 (29.48 MB)
05 demonstration-initializing-pca.mp4 (13.78 MB)
07 demonstration-implementing-optimal-pca.mp4 (25.04 MB)
08 working-of-lda.mp4 (29.56 MB)
09 demonstration-of-lda.mp4 (32.12 MB)
01 summary-for-machine-learning-algorithms.mp4 (10.05 MB)
01 what-are-association-rules.mp4 (27.58 MB)
02 apriori-algorithm.mp4 (20.99 MB)
03 demonstrating-apriori-algorithm.mp4 (48.01 MB)
01 what-are-recommendation-engine.mp4 (22.26 MB)
02 cbf.mp4 (21.73 MB)
04 demonstration-testing-the-model.mp4 (27.23 MB)
01 course-summary-for-applied-machine-learning-with-python.mp4 (11.91 MB)
02 course-introduction.mp4 (16.72 MB)
03 environment-configuration.mp4 (11.19 MB)
01 machine-learning-vs-deep-learning.mp4 (20.38 MB)
02 what-is-deep-learning.mp4 (11.82 MB)
03 neural-networks.mp4 (24.43 MB)
04 artificial-neural-network-ann.mp4 (16.15 MB)
05 ann-types-and-applications.mp4 (11.34 MB)
06 forward-propagation.mp4 (13.19 MB)
07 perceptron.mp4 (20.54 MB)
08 learning-rate.mp4 (19.98 MB)
09 what-is-activation-function.mp4 (11.81 MB)
10 activation-function-and-its-types.mp4 (14.65 MB)
11 importance-of-epoch.mp4 (15.95 MB)
12 single-layer-perceptron-define-sigmoid-function.mp4 (25.28 MB)
13 single-layer-perceptron-decision-boundary.mp4 (42.76 MB)
01 limitations-of-single-layered-perceptron.mp4 (6.86 MB)
02 multi-layered-perceptron.mp4 (7.72 MB)
03 what-is-backpropagation.mp4 (6.49 MB)
04 backpropagation.mp4 (10.45 MB)
05 demonstration-building-a-simple-neural-network.mp4 (20.81 MB)
01 summary-of-deep-learning-components.mp4 (21.66 MB)
01 limitations-of-mlp.mp4 (16.37 MB)
03 visual-cortex-and-cnn.mp4 (20.59 MB)
04 convolutional-layer.mp4 (20.38 MB)
05 working-of-convolutional-layer.mp4 (20.38 MB)
07 demonstration-designing-the-model.mp4 (29.4 MB)
08 demonstration-building-the-cnn-model.mp4 (22.04 MB)
09 demonstration-model-accuracy.mp4 (12.09 MB)
10 demonstration-adding-more-layers.mp4 (34.12 MB)
12 demonstration-pre-trained-model.mp4 (21.2 MB)
03 tensorflow-hub.mp4 (12.52 MB)
01 summary-of-cnn-in-deep-learning.mp4 (8.47 MB)
02 summary-of-faster-rcnn.mp4 (13.77 MB)
01 rnn-fundamentals.mp4 (13.83 MB)
02 rnn-architecture.mp4 (13.94 MB)
04 implementing-rnn.mp4 (19.15 MB)
01 basics-of-lstm.mp4 (18.39 MB)
02 lstm-structure.mp4 (16.28 MB)
03 forget-gate-and-input-gate.mp4 (14.39 MB)
04 output-gate.mp4 (8.74 MB)
05 importance-of-lstm-architecture.mp4 (14.33 MB)
06 types-of-lstm.mp4 (12.05 MB)
08 demonstration-next-word-prediction-layers.mp4 (32.79 MB)
01 improving-a-model.mp4 (20.63 MB)
02 model-optimization.mp4 (13.69 MB)
03 using-adam-optimizer.mp4 (20.41 MB)
04 model-compilation.mp4 (9.68 MB)
01 course-summary-for-practical-deep-learning-with-python.mp4 (14.05 MB)
01 specialization-introduction.mp4 (16.16 MB)
03 course-introduction.mp4 (11.76 MB)
06 programming-language-and-myths.mp4 (20.15 MB)
07 python-for-ai-ml-code-simpliCity.mp4 (15.97 MB)
08 python-for-ai-ml-ease-of-learning.mp4 (15.14 MB)
09 python-tokens-types.mp4 (12.4 MB)
10 literals.mp4 (26.16 MB)
11 operators-basic-operators.mp4 (46.16 MB)
12 operators-membership-and-identity-operators.mp4 (22.48 MB)
01 explaining-data-types-in-python.mp4 (8.07 MB)
02 demonstration-of-data-types-numeric-sequence-and-mapping.mp4 (35.73 MB)
01 executing-conditional-statement.mp4 (22.98 MB)
02 demonstration-of-if-else-statement.mp4 (15.72 MB)
03 executing-while-loop.mp4 (15.38 MB)
04 demonstration-of-for-loop.mp4 (21.9 MB)
05 looping-multiple-conditions.mp4 (16.23 MB)
01 file-handling.mp4 (18.88 MB)
03 manipulating-files.mp4 (32.13 MB)
04 user-defined-functions.mp4 (30.87 MB)
05 variable-argument-and-variable-keyword-argument.mp4 (18.04 MB)
06 lambda-functions.mp4 (25.16 MB)
07 more-on-functions-and-arguments.mp4 (21.04 MB)
08 modules-in-python.mp4 (13.07 MB)
09 demonstration-of-modules.mp4 (19.7 MB)
01 summary-of-python-essentials.mp4 (7.49 MB)
02 exploring-numpy.mp4 (16.26 MB)
03 numpy-operation.mp4 (32.46 MB)
04 working-with-numpy.mp4 (35.89 MB)
02 pandas-framework.mp4 (20.7 MB)
03 pandas-dataframe-operation.mp4 (33.03 MB)
04 working-with-dataframes-in-pandas.mp4 (26.83 MB)
05 dataframes-with-pandas-operations-and-insights.mp4 (31.97 MB)
06 creating-a-series-in-pandas.mp4 (31.02 MB)
07 working-with-pandas-series.mp4 (22.04 MB)
01 dataframe-data-maniplulation.mp4 (25.83 MB)
02 dataframe-joining.mp4 (33.06 MB)
03 dataframe-grouping-the-data.mp4 (23.43 MB)
04 dataframe-data-cleaning.mp4 (22.07 MB)
05 dataframe-data-adjusting.mp4 (23.95 MB)
03 matplotlib-library.mp4 (21.62 MB)
04 plotting-charts-with-matplotlib.mp4 (19.97 MB)
05 plotting-histogram-and-box-plot.mp4 (11.14 MB)
06 plotting-multiple-charts.mp4 (29.4 MB)
07 introduction-to-seaborn-scatter-plot.mp4 (27.49 MB)
08 basic-charts-in-seaborn.mp4 (24.06 MB)
09 seaborn-heatmap-manipulation.mp4 (9.41 MB)
10 seaborn-flights-dataset.mp4 (18.83 MB)
11 seaborn-gaining-insights-in-flight-data.mp4 (23.94 MB)
12 visualizing-charts-with-plotly.mp4 (19.43 MB)
13 customizing-different-charts-in-plotly.mp4 (25.08 MB)
01 summary-exploring-numpy-and-pandas-in-python.mp4 (6.5 MB)
02 what-is-statistics.mp4 (19.13 MB)
03 measures-of-central-tendency.mp4 (22.62 MB)
04 managing-statistical-data.mp4 (22.04 MB)
05 exploring-and-analyzing-data.mp4 (14.78 MB)
01 measures-of-dispersion.mp4 (20.74 MB)
02 dispersion-demonstration.mp4 (25.14 MB)
03 application-of-dispersion-in-large-data.mp4 (8.37 MB)
02 probability-sample-space-and-events.mp4 (17.41 MB)
03 need-for-probability.mp4 (10.87 MB)
04 types-of-probability.mp4 (15.45 MB)
05 marginal-and-joint-probability-demonstration.mp4 (17.61 MB)
06 conditional-probability-demonstration.mp4 (18.8 MB)
02 what-is-hypothesis-testing.mp4 (20.23 MB)
03 steps-for-hypothesis-testing.mp4 (12.71 MB)
04 null-and-alternate-hypothesis.mp4 (20.5 MB)
05 statistical-test-interpretation.mp4 (22.22 MB)
06 one-tailed-and-two-tailed-test.mp4 (18.67 MB)
07 hypothesis-testing-demonstration.mp4 (23.02 MB)
08 margin-of-error-and-confidence-interval-demonstration.mp4 (35.07 MB)
01 summary-statistical-analysis-with-python.mp4 (7.98 MB)
01 course-summary-python-and-statistics-foundations.mp4 (10.54 MB)
]
Screenshot
NHVEg3hn_o.jpg

tQLoX9eB_o.jpg

sO0Eyhxe_o.jpg

ZvUR19YB_o.jpg

P1ckqsv4_o.jpg

QOa0tZZ7_o.jpg

cvvH1yhY_o.jpg

u9XqEPZd_o.jpg

BQHrL8lC_o.jpg

BNPOexef_o.jpg

dksLuDxR_o.jpg

NJFS0LrC_o.jpg

XhnfNLMB_o.jpg

MEGf9SC9_o.jpg

gzL6hCJi_o.jpg

jRmxrrzi_o.jpg

xS5Fq2vE_o.jpg

OqUukUfj_o.jpg

KE85IYMP_o.jpg

GFLMpVgO_o.jpg

JV4XzW1r_o.jpg

CYjWLikt_o.jpg

ZcEMFYMA_o.jpg

GCjheK6c_o.jpg

0IIXYcO6_o.jpg

GEmlX67z_o.jpg

fqdIsEwb_o.jpg

0ckwOpz5_o.jpg

KIEAsnFH_o.jpg

JmbTgdYP_o.jpg

Jb29cLYT_o.jpg

HxR7kRMX_o.jpg

tuJ1x44K_o.jpg

ol0wsNrw_o.jpg

wSkWQBYB_o.jpg

wnNpYFKT_o.jpg

PFABHVpx_o.jpg

7P45EBcw_o.jpg

iW9MZUmv_o.jpg

E9HsBit8_o.jpg

TqftI0gf_o.jpg

VIUr60ON_o.jpg

EtSPw1U1_o.jpg

WdptRNg2_o.jpg

0xfWKuMk_o.jpg

uZB40oIf_o.jpg

34BzYacV_o.jpg

auZW0U0z_o.jpg

K1hCMDR2_o.jpg

X2VgonBk_o.jpg

9E6YH8fX_o.jpg

R1NuxtBr_o.jpg

myuTlNQK_o.jpg

o8I7OU1O_o.jpg

54PTERk8_o.jpg

rM6EwnxE_o.jpg

Jo0C9mhR_o.jpg

CSLGkFES_o.jpg

NaEh3gQt_o.jpg

95Hholqo_o.jpg

pJQ8d5j5_o.jpg

TeVBhLaA_o.jpg

JdtYibSs_o.jpg

EhG78Kow_o.jpg

W6cB2qAs_o.jpg

XL5QXMqw_o.jpg

zZseyEXR_o.jpg

cgKiIgLS_o.jpg

O0M5B0EK_o.jpg

cOfrRUGg_o.jpg

qiLwnqiI_o.jpg

XduYE00b_o.jpg

GvHiLR97_o.jpg

oKP3Fuqt_o.jpg

KEiJ3Dx8_o.jpg

Y8Wju6vW_o.jpg

e5ih0Lvc_o.jpg

lpppuVjr_o.jpg

s7Df7IDI_o.jpg

PuMpoqqs_o.jpg

tH5SyBYt_o.jpg

7TThLOl6_o.jpg

YApyan6h_o.jpg

nRyFepDz_o.jpg



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten