Base Python For Data Analytics

lesedev317

U P L O A D E R

maxresdefault.jpg

Base Python For Data Analytics
Published 2/2025
Created by Nilesh Ingle
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Beginner | Genre: eLearning | Language: English | Duration: 80 Lectures ( 9h 49m ) | Size: 3.2 GB​


Step-by-step Python training for beginners-no prior coding experience required!
What you'll learn
Understand and apply core Python concepts - Learn variables, data types, operators, and how Python works behind the scenes.
Work with essential data structures - Master lists, dictionaries, tuples, and sets to efficiently store and manipulate data.
Write and control program flow - Use if-else statements, for loops, and while loops to build logical and dynamic programs.
Create reusable code with functions and classes - Write functions and object-oriented programs to structure and optimize your code.
Requirements
Time to practice coding
Free Anaconda software
Free Chrome browser
No prior Python coding knowledge
Description
Who Should NOT Take This Course?This course is designed for those who want to truly learn Python and build a strong foundation for data analytics-not just memorize syntax.If you enjoy learning by solving problems rather than just copying and pasting code, you'll benefit the most.This course focuses on base Python fundamentals without relying on libraries like NumPy, Pandas, or Matplotlib.If you're looking for a shortcut to a certificate or a quick-fix approach, this may not be the right course for you. But if you want to develop real skills and confidence in Python, you're in the right place!"If you want to truly learn Python and build a strong foundation for data analytics, this course is exactly what you need!"Want to build a solid foundation in Python? This course is for you!Get 570+ practice questions, including standalone exercises and projects to apply your Python skills!!!Python is one of the most widely used programming languages, especially in data analytics, machine learning, and automation. Before diving into specialized libraries like NumPy and pandas, it's crucial to master base Python concepts-and that's exactly what this course will help you do. Note that numpy, pandas, matplotlib is not covered in this course.This course focuses on pure base Python for analytics. It does not cover NumPy, pandas, or matplotlib.What You Will Learn:- Python syntax, variables, and data types-Working with lists, tuples, dictionaries, and sets- Using if-else statements and loops to control program flow- Writing functions and understanding function arguments- Introduction to object-oriented programming (OOP) with classes and objects- Best practices for writing clean and efficient Python codeCourse Structure:(1) Introduction to Python - Why Python? Installation and setup (Anaconda & Jupyter Notebook).(2) Python Basics - Variables, data types, type conversions, operators, and expressions.(3) Data Structures - Lists, tuples, dictionaries, sets, and their use cases.(4) Control Flow - If-else conditions, for loops, while loops, and iteration techniques.(5) Functions & Modular Programming - Writing reusable functions, function arguments, and lambda functions.(6) Object-Oriented Programming (OOP) - Understanding classes, objects, methods, and basic OOP concepts.(7) Hands-on Coding Exercises - Apply your skills with real-world examples and challenges.This course is designed for absolute beginners and requires no prior programming experience. By the end, you'll have a strong grasp of Python fundamentals, preparing you for advanced topics like data analytics and automation.Join now and start your Python journey today!
Who this course is for
Beginner in Python
Want to learn coding
Student
Working professional
Looking for a career change into data analytics or data science
Want to build a strong Python foundation before diving into data analytics, machine learning, or AI? Start here!
Homepage

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar
541637676_oip.jpg

1.99 GB | 00:05:52 | mp4 | 1280X720 | 16:9
Genre:eLearning |Language:English


Files Included :
01 welcome-to-course-3.mp4 (50.53 MB)
02 generative-ai-in-this-course.mp4 (6.81 MB)
03 module-1-introduction.mp4 (9.51 MB)
01 computer-programming.mp4 (17.58 MB)
02 navigating-the-jupyter-notebook-environment.mp4 (18.64 MB)
03 input-processing-output.mp4 (16.5 MB)
04 python-or-a-spreadsheet.mp4 (21.84 MB)
01 types-and-expressions.mp4 (13.58 MB)
02 printing-and-comments.mp4 (20.37 MB)
04 storing-information-variables.mp4 (20.35 MB)
05 debugging-with-variables.mp4 (24.67 MB)
08 creating-lists.mp4 (24.08 MB)
09 list-operations.mp4 (22.51 MB)
10 taking-action-calling-functions.mp4 (27.5 MB)
12 state.mp4 (20.64 MB)
01 control-flow.mp4 (11.3 MB)
02 comparison.mp4 (26.8 MB)
03 branching-code-if-else.mp4 (16.27 MB)
05 repeating-actions-for-loops.mp4 (20.91 MB)
06 indentation.mp4 (22.76 MB)
07 branching-code-elif.mp4 (21.84 MB)
09 repeating-actions-range.mp4 (20.02 MB)
11 execution-order.mp4 (18.56 MB)
01 your-first-graded-lab.mp4 (24.03 MB)
01 module-2-introduction.mp4 (10.39 MB)
01 beyond-lists.mp4 (15.83 MB)
02 importing-modules.mp4 (18.52 MB)
03 pandas.mp4 (11.03 MB)
04 reading-csv-into-python.mp4 (25.51 MB)
06 dataframes.mp4 (22.18 MB)
07 attributes-and-methods.mp4 (11.56 MB)
09 selecting-columns.mp4 (23.37 MB)
10 counts-sums-histograms.mp4 (20.29 MB)
01 sorting.mp4 (14.4 MB)
02 sorting-by-multiple-columns.mp4 (12.12 MB)
04 filtering.mp4 (19.99 MB)
05 filtering-by-multiple-conditions.mp4 (14.03 MB)
07 selecting-rows.mp4 (28.06 MB)
01 central-tendency-variability-and-skewness.mp4 (22.51 MB)
02 categorical-data.mp4 (25.2 MB)
04 correlation.mp4 (31.91 MB)
05 segmentation-by-one-feature.mp4 (16.59 MB)
06 segmentation-by-multiple-features.mp4 (27.9 MB)
01 module-3-introduction.mp4 (7.99 MB)
01 plotting-with-matplotlib.mp4 (24.72 MB)
03 colors-grids-saving-plots.mp4 (18.47 MB)
04 text-annotations.mp4 (28.01 MB)
05 ticks-spines.mp4 (25.28 MB)
06 grouped-column-charts.mp4 (24.43 MB)
07 stacked-column-charts.mp4 (17.05 MB)
08 scatter-plots.mp4 (22.66 MB)
09 method-chaining.mp4 (19.95 MB)
01 plotting-with-seaborn.mp4 (19.88 MB)
02 themes-palettes.mp4 (20.97 MB)
03 box-plots.mp4 (21.13 MB)
04 histograms.mp4 (20.86 MB)
05 other-charts.mp4 (30.67 MB)
01 combining-charts.mp4 (20.76 MB)
02 matplotlib-subplots.mp4 (19.22 MB)
03 looping-with-subplots.mp4 (19.63 MB)
04 seaborn-pairplot.mp4 (26.2 MB)
01 module-4-introduction.mp4 (8.84 MB)
01 confidence-intervals.mp4 (26.49 MB)
03 one-sample-t-tests.mp4 (21.98 MB)
04 two-sample-t-tests.mp4 (22.26 MB)
05 simulation-uniform.mp4 (22.05 MB)
06 simulation-normal.mp4 (31.93 MB)
01 what-is-linear-regression.mp4 (26.77 MB)
02 choosing-an-independent-variable.mp4 (19.54 MB)
03 training-the-model.mp4 (21.02 MB)
04 interpreting-the-output-of-a-regression-model.mp4 (27.89 MB)
05 prediction.mp4 (30.59 MB)
01 multiple-linear-regression.mp4 (16.59 MB)
02 training-a-multiple-linear-regression-model.mp4 (27.59 MB)
03 interpreting-multiple-linear-regression.mp4 (19.58 MB)
04 encoding-categorical-data.mp4 (18.21 MB)
05 modeling-with-categorical-data.mp4 (29.18 MB)
06 prediction-multiple-linear-regression.mp4 (14.15 MB)
07 evaluating-your-model.mp4 (25.99 MB)
08 llms-for-model-iteration.mp4 (46.25 MB)
09 the-linear-regression-process.mp4 (15.11 MB)
01 module-5-introduction.mp4 (8.98 MB)
01 datetimes.mp4 (26.77 MB)
02 using-datetimes-as-indices.mp4 (19.75 MB)
04 line-charts.mp4 (25.11 MB)
05 formatting-date-axis-labels.mp4 (27.31 MB)
01 moving-average.mp4 (30.94 MB)
02 percent-change.mp4 (21.21 MB)
03 segmentation.mp4 (25.15 MB)
04 multiple-line-charts-reshaping.mp4 (26.77 MB)
06 resampling.mp4 (30.32 MB)
01 forecasting-with-the-trend.mp4 (24.39 MB)
02 forecasting-with-seasonality.mp4 (26.55 MB)
03 error-metrics-for-forecasting.mp4 (29.59 MB)
01 your-next-steps.mp4 (29.23 MB)
]
Screenshot
KL0ScY7a_o.jpg

LU4h0G6m_o.jpg

CK1JPp8W_o.jpg

kUa1HmLy_o.jpg

6bmFrFlm_o.jpg

Rn1SKQnm_o.jpg

fLKQToSa_o.jpg

BIGWgDDv_o.jpg

vLlnPIHo_o.jpg

vImFQjNl_o.jpg

AyWV0jUK_o.jpg

K3vNKWCA_o.jpg

VLH0z7bI_o.jpg

zP0MzLx0_o.jpg

0e5Hs0oO_o.jpg

c67Vhml5_o.jpg

fxtM814H_o.jpg

XBr7s1LL_o.jpg

HZdDCsjI_o.jpg

JhSh9Ubi_o.jpg

B1xnF0EQ_o.jpg

ly5WWLcn_o.jpg

iK0KRYEM_o.jpg

zvEhFane_o.jpg

0fqR4By6_o.jpg

bdi6Saiy_o.jpg

GexDxPuc_o.jpg

YOZRWkH4_o.jpg

9NhGvQqY_o.jpg

BpJS4M3A_o.jpg

o0Skhzw8_o.jpg

aaN6yTDE_o.jpg

NPqt8IA8_o.jpg

y2MKByxJ_o.jpg

h6ThFCJu_o.jpg

VSfw4hJx_o.jpg

oyrBRI9x_o.jpg

ThmNXzO6_o.jpg



RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten