Udemy - Learn Large Language Models (LLMs) with Python and LangChain

dkmdkm

U P L O A D E R
d5a25c0389c812a375bfd2ebcb4121b2.webp

Free Download Udemy - Learn Large Language Models (LLMs) with Python and LangChain
Published: 4/2025
Created by: Holczer Balazs
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Level: Intermediate | Genre: eLearning | Language: English | Duration: 91 Lectures ( 10h 53m ) | Size: 3.13 GB

Understand the Fundamentals of Large Language Models (LLMs) like BERT, RoBERTa, GPT, LLAMA with Python, Google Colab
What you'll learn
large language models (LLMs) fundamentals
encoder-only transformer architectures (BERT, RoBERTa etc.)
decoder-only transformer architectures (GPT, LLaMA etc.)
transfer learning and fine-tuning
retrieval-augmented generation (RAG)
Requirements
machine learning fundamentals
Python programming fundamentals
Description
Unlock the power of Large Language Models (LLMs) and bring cutting-edge AI to your projects! This beginner-friendly yet comprehensive course takes you deep into the world of transformer-based models - from foundational architectures like BERT and RoBERTa, to generative giants like GPT and Meta's LLaMA.But we don't stop there.You'll also explore Retrieval-Augmented Generation (RAG) - one of the most powerful methods to enhance LLMs with real-time, context-aware information retrieval. Learn how RAG bridges the gap between static models and dynamic, knowledge-grounded generation - perfect for applications like chatbots, enterprise search, and AI assistants.Whether you're a beginner Python developer or someone curious about how LLMs really work, this course will give you the theory, hands-on skills, and real-world insights to work confidently with modern AI tools.What You'll LearnSection 1 - Transformersword embeddingspositional embeddings and encodingself-attention mechanismmaskingmulti-head architecturehow to train a transformer architecturetransformer architectures: GPT, BERT and LLaMASection 2 - Encoder-Only ArchitecturesBERT fundamentalspre-training and fine-tuning the modelthe[CLS] tokenBERT and RoBERTasentiment analysis, text classification and question answering with BERTSection 3 - Decoder-Only ArchitecturesGPT and LLaMA fundamentalsreinforcement learning from human feedback (RLHF)fine-tuning decoder-only architecturesLoRA and QLoRAfine-tuning models on custom datasetSection 4 - Retrieval-Augmented Generation (RAG)what is RAG?semantic search and vector databasesLSH and HNSW algorithmsusing RAG with PDF filesSection 5 - Prompt Engineeringprompt engineering fundamentalszero-shot promptingfew-shot promptingchain of thoughts (CoT)prompt chaining methodsJoin the course today and start your journey into the world of Large Language Models and Retrieval-Augmented Generation. Whether you're building smarter apps, enhancing your AI knowledge, or simply exploring the future of language technology - this course will give you the tools and confidence to level up.Enroll now and start building with the AI models shaping the future. Let's get learning!
Who this course is for
Beginner Python developers who are curious about generative AI and large language models (LLMs)
Homepage:
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
No Password - Links are Interchangeable
 
Kommentar

4a4aa2b113ce6a4c684365376ee4e91b.jpg

Learn Large Language Models (LLMs) with Python and LangChain
Published 4/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 10h 53m | Size: 3.13 GB​

Understand the Fundamentals of Large Language Models (LLMs) like BERT, RoBERTa, GPT, LLAMA with Python, Google Colab

What you'll learn
large language models (LLMs) fundamentals
encoder-only transformer architectures (BERT, RoBERTa etc.)
decoder-only transformer architectures (GPT, LLaMA etc.)
transfer learning and fine-tuning
retrieval-augmented generation (RAG)

Requirements
machine learning fundamentals
Python programming fundamentals

Description
Unlock the power of Large Language Models (LLMs) and bring cutting-edge AI to your projects! This beginner-friendly yet comprehensive course takes you deep into the world of transformer-based models - from foundational architectures like BERT and RoBERTa, to generative giants like GPT and Meta's LLaMA.But we don't stop there.You'll also explore Retrieval-Augmented Generation (RAG) - one of the most powerful methods to enhance LLMs with real-time, context-aware information retrieval. Learn how RAG bridges the gap between static models and dynamic, knowledge-grounded generation - perfect for applications like chatbots, enterprise search, and AI assistants.Whether you're a beginner Python developer or someone curious about how LLMs really work, this course will give you the theory, hands-on skills, and real-world insights to work confidently with modern AI tools.What You'll LearnSection 1 - Transformersword embeddingspositional embeddings and encodingself-attention mechanismmaskingmulti-head architecturehow to train a transformer architecturetransformer architectures: GPT, BERT and LLaMASection 2 - Encoder-Only ArchitecturesBERT fundamentalspre-training and fine-tuning the modelthe[CLS] tokenBERT and RoBERTasentiment analysis, text classification and question answering with BERTSection 3 - Decoder-Only ArchitecturesGPT and LLaMA fundamentalsreinforcement learning from human feedback (RLHF)fine-tuning decoder-only architecturesLoRA and QLoRAfine-tuning models on custom datasetSection 4 - Retrieval-Augmented Generation (RAG)what is RAG?semantic search and vector databasesLSH and HNSW algorithmsusing RAG with PDF filesSection 5 - Prompt Engineeringprompt engineering fundamentalszero-shot promptingfew-shot promptingchain of thoughts (CoT)prompt chaining methodsJoin the course today and start your journey into the world of Large Language Models and Retrieval-Augmented Generation. Whether you're building smarter apps, enhancing your AI knowledge, or simply exploring the future of language technology - this course will give you the tools and confidence to level up.Enroll now and start building with the AI models shaping the future. Let's get learning!

Who this course is for
Beginner Python developers who are curious about generative AI and large language models (LLMs)

kvWqkfbv_o.jpg



AusFile
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten