Udemy Learn LangChain Pinecone OpenAI Build Next Gen LLM Apps

0dayddl

U P L O A D E R

359020115_tuto.jpg


Download Free Download : Udemy Learn LangChain Pinecone OpenAI Build Next Gen LLM Apps
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:2.75 GB

Files Included :
001 How to Get the Most Out of This Course.mp4 (19 MB)
MP4
001 LangChain Demo.mp4 (58.93 MB)
MP4
002 Introduction to LangChain.mp4 (14.73 MB)
MP4
004 Setting Up the Environment LangChain, Pinecone, and Python-dotenv.mp4 (81.1 MB)
MP4
005 ChatModels GPT-3 5-Turbo and GPT-4.mp4 (24.9 MB)
MP4
006 Prompt Templates.mp4 (33.17 MB)
MP4
007 Simple Chains.mp4 (41.23 MB)
MP4
008 Sequential Chains.mp4 (68.13 MB)
MP4
009 Introduction to LangChain Agents.mp4 (16.82 MB)
MP4
010 LangChain Agents in Action.mp4 (33.41 MB)
MP4
011 Short Recap of Embeddings.mp4 (12.57 MB)
MP4
012 Introduction to Vector Databases.mp4 (68.58 MB)
MP4
013 Diving into Pinecone, Part 1.mp4 (61.8 MB)
MP4
014 Diving into Pinecone, Part 2.mp4 (32.05 MB)
MP4
015 Splitting and Embedding Text Using LangChain.mp4 (68.6 MB)
MP4
016 Inserting the Embeddings into a Pinecone Index.mp4 (39.14 MB)
MP4
017 Asking Questions (Similarity Search).mp4 (64.9 MB)
MP4
001 Jupyter AI.mp4 (5.34 MB)
MP4
002 Introduction to Jupyter AI and Other Coding Companions.mp4 (33.5 MB)
MP4
003 Installing Jupyter AI.mp4 (41.76 MB)
MP4
004 Using Jupyter AI in JupyterLab.mp4 (83.89 MB)
MP4
005 Setting Up Jupyter AI in Jupyter Notebook.mp4 (26.49 MB)
MP4
006 Using Jupyter AI in Jupyter Notebook.mp4 (31.29 MB)
MP4
007 Using Interpolation for More Advanced Use Cases.mp4 (29.35 MB)
MP4
008 Using Jupyter AI with Other Providers and Models.mp4 (25.76 MB)
MP4
001 Project Introduction.mp4 (14.63 MB)
MP4
002 Implementing a ChatGPT App with ChatPromptTemplates and Chains.mp4 (72.04 MB)
MP4
003 Adding Chat Memory Using ConversationBufferMemory.mp4 (54.86 MB)
MP4
004 Saving Chat Sessions.mp4 (41.04 MB)
MP4
001 Project Introduction.mp4 (33.18 MB)
MP4
002 Loading Your Custom (Private) PDF Documents.mp4 (27.12 MB)
MP4
003 Loading Different Document Formats.mp4 (41.73 MB)
MP4
004 Public and Private Service Loaders.mp4 (40.53 MB)
MP4
005 Chunking Strategies and Splitting the Documents.mp4 (46.71 MB)
MP4
006 Embedding and Uploading to a Vector Database (Pinecone).mp4 (68.55 MB)
MP4
007 Asking and Getting Answers.mp4 (84.85 MB)
MP4
008 Adding Memory (Chat History).mp4 (77.03 MB)
MP4
001 Project Introduction and Library Installation.mp4 (28.28 MB)
MP4
002 Defining Functions.mp4 (23.55 MB)
MP4
003 Creating the Sidebar.mp4 (43.01 MB)
MP4
004 Reading, Chunking, and Embedding Data.mp4 (47.25 MB)
MP4
005 Asking Questions and Getting Answers.mp4 (18.43 MB)
MP4
006 Saving the Chat History.mp4 (23.4 MB)
MP4
007 Clearing Session State History Using Callback Functions.mp4 (18.95 MB)
MP4
001 Project Introduction.mp4 (9.77 MB)
MP4
002 Summarizing Using a Basic Prompt.mp4 (48.36 MB)
MP4
003 Summarizing using Prompt Templates.mp4 (39.91 MB)
MP4
004 Summarizing Using StuffDocumentsChain.mp4 (47.63 MB)
MP4
005 Summarizing Large Documents Using map reduce.mp4 (37.81 MB)
MP4
006 map reduce With Custom Prompts.mp4 (36.67 MB)
MP4
007 Summarizing Using the refine CombineDocumentChain.mp4 (68.74 MB)
MP4
008 refine With Custom Prompts.mp4 (28.64 MB)
MP4
009 Summarizing Using LangChain Agents.mp4 (37.49 MB)
MP4
001 Project Introduction.mp4 (4.62 MB)
MP4
002 Building the App.mp4 (41.24 MB)
MP4
003 Displaying the Chat History.mp4 (44.58 MB)
MP4
004 Testing the App.mp4 (8.06 MB)
MP4
002 Introduction to Streamlit.mp4 (42.47 MB)
MP4
003 Streamlit Main Concepts.mp4 (27.38 MB)
MP4
004 Displaying Data on the Screen st write() and Magic.mp4 (20.57 MB)
MP4
005 Widgets, Part 1 text input, number input, button.mp4 (10.12 MB)
MP4
006 Widgets, Part 2 checkbox, radio, select.mp4 (43.37 MB)
MP4
007 Widgets, Part 3 slider, file uploader, camera input, image.mp4 (46.37 MB)
MP4
008 Layout Sidebar.mp4 (3.21 MB)
MP4
009 Layout Columns.mp4 (12.69 MB)
MP4
010 Layout Expander.mp4 (10.16 MB)
MP4
011 Displaying a Progress Bar.mp4 (7.12 MB)
MP4
012 Session State.mp4 (19.45 MB)
MP4
013 Callbacks.mp4 (13.61 MB)
MP4
002 While and continue Statements.mp4 (7.43 MB)
MP4
003 While and break Statements.mp4 (14.02 MB)
MP4
004 List Slicing and Iteration.mp4 (16.87 MB)
MP4
005 List Comprehension - Part 1.mp4 (13.14 MB)
MP4
006 List Comprehension - Part 2.mp4 (15.41 MB)
MP4
007 Working with Dictionaries.mp4 (22.46 MB)
MP4
008 JSON Data Serialization.mp4 (21.07 MB)
MP4
009 JSON Data Deserialization.mp4 (17.15 MB)
MP4
010 Assignment JSON and RequestsREST API.mp4 (5.13 MB)
MP4
011 Assignment Answer JSON and RequestsREST API.mp4 (17.68 MB)
MP4
001 Setting Up the Environment Jupyter Notebook.mp4 (80.41 MB)
MP4
002 Setting Up the Environment Google Colab.mp4 (51.64 MB)
MP4

LYQ5kvU0_t.jpg


363506399_rg.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
364146951_nitroflare.jpg

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
374887060_banner_240-32.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar
d6577f44d0dddbb7ed28eef32da48412.jpg


Learn LangChain, Pinecone & OpenAI: Build Next-Gen LLM Apps
Last updated 6/2023
Duration: 5h 57m | .MP4 1280x720, 30 fps(r) | AAC, 44100 Hz, 2ch | 2.05 GB​

Genre: eLearning | Language: English [/center]

Unleash the Power of AI: Hands-On Applications with LangChain, Pinecone, and OpenAI. Join the AI Revolution Today!

What you'll learn
How to Use LangChain, Pinecone, and OpenAI to Build LLM-Powered Applications.
Learn about LangChain components, including LLM wrappers, prompt templates, chains, and agents.
Learn about the different types of chains available in LangChain, such as stuff, map_reduce, refine, and LangChain agents.
Acquire a solid understanding of embeddings and vector data stores.
Learn how to use embeddings and vector data stores to improve the performance of your LangChain applications.
Deep Dive into Pinecone.
Learn about Pinecone Indexes and Similarity Search.
Project: Build an LLM-powered question-answering application for custom or private documents.
Project: Build a summarization system for large documents using various methods and chains: stuff, map_reduce, refine, or LangChain Agents.
This will be a Learning-by-Doing Experience. We'll Build Together, Step-by-Step, Line-by-Line, Real-World Applications.
You'll learn how to create web interfaces (front-ends) for you LLM and generative AI apps using Streamlit.
Streamlit: main concepts, widgets, session state, callbacks.

Requirements
Basic Python programming experience is required.
You should be able to sign up to OpenAI API with a valid phone number.
Description
Master LangChain, Pinecone, and OpenAI.
Build hands-on generative LLM-powered applications with LangChain.
The AI revolution is here and it will change the world!
In a few years, the entire society will be reshaped by artificial intelligence.
By the end of this course, you will have a solid understanding of the fundamentals of LangChain, Pinecone, and OpenAI.
This
LangChain course
is the 2nd part of
"OpenAI API with Python Bootcamp"
. It is not recommended for complete beginners as it requires some essential Python programming experience.
Currently, the effort, knowledge, and money of major technology corporations worldwide are being invested in AI.
In this course, you'll learn how to build state-of-the-art LLM-powered applications with LangChain.
What is LangChain?
LangChain
is an open-source framework that allows developers working with AI to combine large language models (LLMs) like GPT-4 with external sources of computation and data. It makes it easy to build and deploy AI applications that are both scalable and performant.
It also facilitates entry into the AI field for individuals from diverse backgrounds and enables the deployment of AI as a service.
In this course, we'll go over LangChain components, LLM wrappers, Chains, and Agents. We'll dive deep into embeddings and vector databases such as Pinecone.
This will be a learning-by-doing experience. We'll build together, step-by-step, line-by-line, real-world LLM applications with Python, LangChain, and OpenAI.
We will develop an
LLM-powered question-answering application
using LangChain, Pinecone, and OpenAI for custom or private documents. This opens up an infinite number of practical use cases.
We will also build a
summarization system
, which is a valuable tool for anyone who needs to summarize large amounts of text. This includes students, researchers, and business professionals.
I will continue to add new projects that solve different problems.
This course, and the technologies it covers, will always be under development and continuously updated.
The topics covered in this "LangChain, Pinecone and OpenAI" course are:
LangChain Fundamentals
Setting Up the Environment with Dotenv: LangChain, Pinecone, OpenAI
LLM Models (Wrappers): GPT-3
ChatModels: GPT-3.5-Turbo and GPT-4
LangChain Prompt Templates
Simple Chains
Sequential Chains
Introduction to LangChain Agents
LangChain Agents in Action
Vector Embeddings
Introduction to Vector Databases
Diving into Pinecone
Splitting and Embedding Text Using LangChain
Inserting the Embeddings into a Pinecone Index
Asking Questions (Similarity Search) and Gettings Answers (GPT-4)
Creating front-ends for LLM and generative AI apps using Streamlit
Streamlit: main concepts, widgets, session state, callbacks.
The skills you will acquire will allow you to build and deploy real-world AI applications. I can't tell you how excited I am to teach you all these cutting-edge technologies.
Come on board now, so that you are not left behind.
I will see you in the course!
Who this course is for:
Python programmers who want to build LLM-Powered Applications using LangChain, Pinecone and OpenAI.
Any technical person interested in the most disruptive technology of this decade.
Any programmer interested in AI.

Bitte Anmelden oder Registrieren um Links zu sehen.

TQUXHcgv_o.jpg


363506399_rg.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
374887060_banner_240-32.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
learn-langchain
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten