Securing Generative AI By Omar Santos

dkmdkm

U P L O A D E R
77e7b7f08d03fbe72a68ab9eff7b1da4.jpg

Free Download Securing Generative AI By Omar Santos
Released 10/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 3h 31m | Size: 846 MB
Course Outline

Securing Generative AI: Introduction
3m
Learning objectives
1m 18s
1.1 Understanding the Significance of LLMs in the AI Landscape
7m 6s
1.2 Exploring the Resources for this Course - GitHub Repositories and Others
2m 54s
1.3 Introducing Retrieval Augmented Generation (RAG)
12m 25s
1.4 Understanding the OWASP Top-10 Risks for LLMs
5m 46s
1.5 Exploring the MITRE ATLAS (Adversarial Threat Landscape for Artificial-Intelligence Systems) Framework
5m 39s
Learning objectives
1m 2s
2.1 Defining Prompt Injection Attacks
11m 42s
2.2 Exploring Real-life Prompt Injection Attacks
3m 57s
2.3 Using ChatML for OpenAI API Calls to Indicate to the LLM the Source of Prompt Input
10m 5s
2.4 Enforcing Privilege Control on LLM Access to Backend Systems
6m 10s
2.5 Best Practices Around API Tokens for Plugins, Data Access, and Function-level Permissions
3m 2s
2.6 Understanding Insecure Output Handling Attacks
3m 22s
2.7 Using the OWASP ASVS to Protect Against Insecure Output Handling
4m 43s
Learning objectives
47s
3.1 Understanding Training Data Poisoning Attacks
4m 27s
3.2 Exploring Model Denial of Service Attacks
3m 12s
3.3 Understanding the Risks of the AI and ML Supply Chain
8m 34s
3.4 Best Practices when Using Open-Source Models from Hugging Face and Other Sources
12m 46s
3.5 Securing Amazon BedRock, SageMaker, Microsoft Azure AI Services, and Other Environments
16m 5s
Learning objectives
1m 4s
4.1 Understanding Sensitive Information Disclosure
2m 53s
4.2 Exploiting Insecure Plugin Design
3m 12s
4.3 Avoiding Excessive Agency
3m 46s
Learning objectives
47s
5.1 Understanding Overreliance
5m 17s
5.2 Exploring Model Theft Attacks
4m 57s
5.3 Understanding Red Teaming of AI Models
13m 34s
Learning objectives
1m 6s
6.1 Understanding the RAG, LangChain, Llama Index, and AI Orchestration
17m 25s
6.2 Securing Embedding Models
9m 39s
6.3 Securing Vector Databases
12m 1s
6.4 Monitoring and Incident Response
7m 50s
Screenshot







Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
No Password - Links are Interchangeable
 
Kommentar
359020115_tuto.jpg

845.7 MB | 00:16:04 | mp4 | 1280X720 | 16:9
Genre:eLearning |Language:English


Files Included :
001 Securing Generative AI Introduction (18.76 MB)
001 Learning objectives (8.44 MB)
002 1 1 Understanding the Significance of LLMs in the AI Landscape (48.75 MB)
003 1 2 Exploring the Resources for this Course - GitHub Repositories and Others (10.69 MB)
004 1 3 Introducing Retrieval Augmented Generation (RAG) (33.99 MB)
005 1 4 Understanding the OWASP Top-10 Risks for LLMs (20.87 MB)
006 1 5 Exploring the MITRE ATLAS (Adversarial Threat Landscape for Artificial-Intelligence Systems) Framework (25.81 MB)
001 Learning objectives (6.53 MB)
002 2 1 Defining Prompt Injection Attacks (66.05 MB)
003 2 2 Exploring Real-life Prompt Injection Attacks (17.2 MB)
004 2 3 Using ChatML for OpenAI API Calls to Indicate to the LLM the Source of Prompt Input (38.21 MB)
005 2 4 Enforcing Privilege Control on LLM Access to Backend Systems (15.89 MB)
006 2 5 Best Practices Around API Tokens for Plugins, Data Access, and Function-level Permissions (10.19 MB)
007 2 6 Understanding Insecure Output Handling Attacks (8.39 MB)
008 2 7 Using the OWASP ASVS to Protect Against Insecure Output Handling (19.99 MB)
001 Learning objectives (4.93 MB)
002 3 1 Understanding Training Data Poisoning Attacks (21.82 MB)
003 3 2 Exploring Model Denial of Service Attacks (9.88 MB)
004 3 3 Understanding the Risks of the AI and ML Supply Chain (36.21 MB)
005 3 4 Best Practices when Using Open-Source Models from Hugging Face and Other Sources (52.31 MB)
006 3 5 Securing Amazon BedRock, SageMaker, Microsoft Azure AI Services, and Other Environments (67.84 MB)
001 Learning objectives (6.51 MB)
002 4 1 Understanding Sensitive Information Disclosure (18.11 MB)
003 4 2 Exploiting Insecure Plugin Design (12.09 MB)
004 4 3 Avoiding Excessive Agency (14.82 MB)
001 Learning objectives (4.48 MB)
002 5 1 Understanding Overreliance (21.21 MB)
003 5 2 Exploring Model Theft Attacks (16.43 MB)
004 5 3 Understanding Red Teaming of AI Models (49.01 MB)
001 Learning objectives (6.76 MB)
002 6 1 Understanding the RAG, LangChain, Llama Index, and AI Orchestration (59.3 MB)
003 6 2 Securing Embedding Models (29.23 MB)
004 6 3 Securing Vector Databases (41.59 MB)
005 6 4 Monitoring and Incident Response (23.4 MB)
]
Screenshot
Jn7uZO9m_o.jpg


Fikper
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
FileAxa
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
TurboBit
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten