Download Free Download : Pluralsight - Machine Learning Literacy
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:1.66 GB
Files Included :
1 Course Overview.mp4 (4.54 MB)
MP4
1 Overview.mp4 (1.92 MB)
MP4
2 What to Expect.mp4 (1.47 MB)
MP4
3 On Machine Learning.mp4 (5.87 MB)
MP4
4 What Is Different About Machine Learning.mp4 (4.03 MB)
MP4
5 Learning Types.mp4 (11.29 MB)
MP4
6 Machine Learning Pipeline.mp4 (9.47 MB)
MP4
7 Problem Definition.mp4 (4.73 MB)
MP4
8 Introducing Google Collaboratory.mp4 (8.3 MB)
MP4
9 Summary.mp4 (1.2 MB)
MP4
1 Overview.mp4 (1.45 MB)
MP4
2 Revisiting ML Pipeline.mp4 (1.5 MB)
MP4
3 Understanding Data Sourcing.mp4 (8.29 MB)
MP4
4 CSV Format.mp4 (1.93 MB)
MP4
5 Understanding SciPy.mp4 (6.54 MB)
MP4
6 Demo - Loading Data into Pandas.mp4 (8.88 MB)
MP4
7 Summary.mp4 (1.12 MB)
MP4
01 Overview.mp4 (1.4 MB)
MP4
02 Revisiting ML Pipeline.mp4 (2.14 MB)
MP4
03 Introducing Data Analysis.mp4 (5.5 MB)
MP4
04 Univariant Numerical Analysis.mp4 (12.54 MB)
MP4
05 Bivariant Numerical Analysis.mp4 (7.93 MB)
MP4
06 Demo - Descriptive Stats - Part One.mp4 (14.14 MB)
MP4
07 Demo - Descriptive Stats - Part Two.mp4 (10.01 MB)
MP4
08 Data Visualization.mp4 (10.63 MB)
MP4
09 Demo - Data Visualization - Part One.mp4 (11.67 MB)
MP4
10 Demo - Data Visualization - Part Two.mp4 (10.4 MB)
MP4
11 Summary.mp4 (1021.43 KB)
MP4
01 Overview.mp4 (1.88 MB)
MP4
02 Revisting ML Pipeline.mp4 (2.81 MB)
MP4
03 Data Scaling - The Problem.mp4 (11.24 MB)
MP4
04 Data Scaling - The Solution.mp4 (4.32 MB)
MP4
05 The Need for Data Segregation.mp4 (5.94 MB)
MP4
06 Train Test Split.mp4 (5.05 MB)
MP4
07 KFlod Cross Validation.mp4 (5.25 MB)
MP4
08 Welcoming scikit-learn.mp4 (3.67 MB)
MP4
09 Demo - Data Segregation Techniques.mp4 (8.48 MB)
MP4
10 Summary.mp4 (1.71 MB)
MP4
01 Overview.mp4 (1.5 MB)
MP4
02 Revisiting ML Pipeline.mp4 (1.72 MB)
MP4
03 Scoping Your Focus.mp4 (9.7 MB)
MP4
04 Introducing Derivatives.mp4 (6.81 MB)
MP4
05 Linear Regression.mp4 (5.49 MB)
MP4
06 Variance Bias Tradeoff.mp4 (8.58 MB)
MP4
07 Other Regression Algorithms.mp4 (3.19 MB)
MP4
08 Model Evaluation.mp4 (4.32 MB)
MP4
09 Demo - Deploying and Testing the Model - Part 1.mp4 (18.61 MB)
MP4
10 Demo - Deploying and Testing the Model - Part 2.mp4 (15.76 MB)
MP4
11 Summary.mp4 (2.87 MB)
MP4
1 Overview.mp4 (1.74 MB)
MP4
2 Handling Features.mp4 (2.95 MB)
MP4
3 Model Improvement.mp4 (2.14 MB)
MP4
4 Automated ML.mp4 (6.45 MB)
MP4
5 Operationalization.mp4 (2.63 MB)
MP4
6 Team Data Science Process.mp4 (4.21 MB)
MP4
7 Summary.mp4 (3.74 MB)
MP4
1 Course Overview.mp4 (3.23 MB)
MP4
01 Version Check.mp4 (552.03 KB)
MP4
02 Module Overview.mp4 (1.93 MB)
MP4
03 Prerequisites and Course Outline.mp4 (2.27 MB)
MP4
04 The Need for Data Preparation.mp4 (6.1 MB)
MP4
05 Insufficient Data.mp4 (10.02 MB)
MP4
06 Too Much Data.mp4 (6.35 MB)
MP4
07 Non-representative Data, Missing Values, Outliers, Duplicates.mp4 (3.55 MB)
MP4
08 Dealing with Missing Data.mp4 (7.56 MB)
MP4
09 Dealing with Outliers.mp4 (8.17 MB)
MP4
10 Oversampling and Undersampling to Balance Datasets.mp4 (7.13 MB)
MP4
11 Overfitting and Underfitting.mp4 (4.24 MB)
MP4
12 Module Summary.mp4 (2.14 MB)
MP4
01 Module Overview.mp4 (1.83 MB)
MP4
02 Handling Missing Values.mp4 (12.87 MB)
MP4
03 Cleaning Data.mp4 (15.02 MB)
MP4
04 Visualizing Relationships.mp4 (8.4 MB)
MP4
05 Building a Regression Model.mp4 (14.85 MB)
MP4
06 Univariate Feature Imputation Using the Simple Imputer.mp4 (14.99 MB)
MP4
07 Multivariate Feature Imputation Using the Iterative Imputer.mp4 (12.14 MB)
MP4
08 Missing Value Indicator.mp4 (3.97 MB)
MP4
09 Feature Imputation as a Part of an Machine Learning Pipeline.mp4 (7.85 MB)
MP4
10 Module Summary.mp4 (2.06 MB)
MP4
01 Module Overview.mp4 (3.97 MB)
MP4
02 Numeric Data.mp4 (8.04 MB)
MP4
03 Scaling and Standardizing Features.mp4 (9.3 MB)
MP4
04 Normalizing and Binarizing Features.mp4 (12.24 MB)
MP4
05 Categorical Data.mp4 (4.89 MB)
MP4
06 Numeric Encoding of Categorical Data.mp4 (7.27 MB)
MP4
07 Label Encoding and One-hot Encoding.mp4 (15.24 MB)
MP4
08 Discretization of Continuous Values Using Pandas Cut.mp4 (6.48 MB)
MP4
09 Discretization of Continuous Values Using the KBins Discretizer.mp4 (7.42 MB)
MP4
10 Building a Regression Model with Discretized Data.mp4 (6.72 MB)
MP4
11 Module Summary.mp4 (1.88 MB)
MP4
1 Module Overview.mp4 (1.82 MB)
MP4
2 The Curse of Dimensionality.mp4 (7.77 MB)
MP4
3 Reducing Complexity in Data.mp4 (4.73 MB)
MP4
4 Feature Selection to Reduce Dimensions.mp4 (5.56 MB)
MP4
5 Filter Methods.mp4 (6.39 MB)
MP4
6 Embedded Methods.mp4 (7.64 MB)
MP4
7 Module Summary.mp4 (2.04 MB)
MP4
1 Module Overview.mp4 (1.84 MB)
MP4
2 Feature Correlations.mp4 (17.28 MB)
MP4
3 Using the Correlation Matrix to Detect Multi-collinearity.mp4 (10.35 MB)
MP4
4 Using Variance Inflation Factor to Detect Multi-collinearity.mp4 (6.57 MB)
MP4
5 Features Selection Using Missing Values Threshold and Variance Threshold.mp4 (13.08 MB)
MP4
6 Univariate Feature Selection Using Chi2 and ANOVA.mp4 (14.09 MB)
MP4
7 Feature Selection Using Wrapper Methods.mp4 (16.17 MB)
MP4
8 Feature Selection Using Embedded Methods.mp4 (7.74 MB)
MP4
9 Module Summary.mp4 (1.98 MB)
MP4
1 Course Overview.mp4 (3.22 MB)
MP4
01 Module Overview.mp4 (1.9 MB)
MP4
02 Prerequisites and Course Outline.mp4 (2.53 MB)
MP4
03 A Case Study - Sentiment Analysis.mp4 (10.11 MB)
MP4
04 Sentiment Analysis as a Binary Classification Problem.mp4 (3.59 MB)
MP4
05 Rule Based vs ML Based Analysis.mp4 (9.98 MB)
MP4
06 Traditional Machine Learning Systems.mp4 (6.82 MB)
MP4
07 Representation Machine Learning Systems.mp4 (3.76 MB)
MP4
08 Deep Learning and Neural Networks.mp4 (8.48 MB)
MP4
09 Traditional ML vs Deep Learning.mp4 (4.91 MB)
MP4
10 Traditional ML Algorithms and Neural Network Design.mp4 (6.68 MB)
MP4
11 Module Summary.mp4 (2.1 MB)
MP4
1 Module Overview.mp4 (1.95 MB)
MP4
2 Choosing the Right Machine Learning Problem.mp4 (9.91 MB)
MP4
3 Supervised and Unsupervised Learning.mp4 (13.05 MB)
MP4
4 Reinforcement Learning.mp4 (10.86 MB)
MP4
5 Recommendation Systems.mp4 (6.7 MB)
MP4
6 Module Summary.mp4 (2.17 MB)
MP4
01 Module Overview.mp4 (2.89 MB)
MP4
02 Regression Models.mp4 (3.44 MB)
MP4
03 Choosing Regression Algorithms.mp4 (6.62 MB)
MP4
04 Evaluating Regression Models.mp4 (8.08 MB)
MP4
05 Types of Classification.mp4 (6.02 MB)
MP4
06 Choosing Classification Algorithms.mp4 (4.72 MB)
MP4
07 Evaluating Classifiers.mp4 (6.41 MB)
MP4
08 Clustering Models.mp4 (8.96 MB)
MP4
09 The Curse of Dimensionality.mp4 (8.58 MB)
MP4
10 Dimensionality Reduction Techniques.mp4 (4.21 MB)
MP4
11 Module Summary.mp4 (1.81 MB)
MP4
01 Module Overview.mp4 (1.99 MB)
MP4
02 Install and Set Up.mp4 (3.57 MB)
MP4
03 Exploring the Regression Dataset.mp4 (5.81 MB)
MP4
04 Simple Regression Using Analytical and Machine Learning Techniques.mp4 (10.61 MB)
MP4
05 Multiple Regression Using Analytical and Machine Learning Techniques.mp4 (4.73 MB)
MP4
06 Exploring the Classification Dataset.mp4 (7.77 MB)
MP4
07 Classification Using Logistic Regression.mp4 (10.48 MB)
MP4
08 Classification Using Decision Trees.mp4 (6.8 MB)
MP4
09 Clustering Using K-means.mp4 (15.06 MB)
MP4
10 Dimensionality Reduction Using Principal Component Analysis.mp4 (9.28 MB)
MP4
11 Dimensionality Reduction Using Manifold Learning.mp4 (13.19 MB)
MP4
12 Module Summary.mp4 (2.1 MB)
MP4
1 Module Overview.mp4 (1.77 MB)
MP4
2 The Machine Learning Workflow.mp4 (6.75 MB)
MP4
3 Case Study - PyTorch on the Cloud.mp4 (8.32 MB)
MP4
4 Ensemble Learning.mp4 (10.05 MB)
MP4
5 Averaging and Boosting, Voting and Stacking.mp4 (3.68 MB)
MP4
6 Custom Neural Networks - Their Characteristics and Applications.mp4 (5.83 MB)
MP4
7 Module Summary.mp4 (1.98 MB)
MP4
1 Module Overview.mp4 (1.71 MB)
MP4
2 Classification Using Hard Voting and Soft Voting.mp4 (11.33 MB)
MP4
3 Exploring and Preprocessing the Regression Dataset.mp4 (6.4 MB)
MP4
4 Regression Using Bagging and Pasting.mp4 (9.81 MB)
MP4
5 Regression Using Gradient Boosting.mp4 (9.02 MB)
MP4
6 Regression Using Neural Networks.mp4 (14.34 MB)
MP4
7 Summary and Further Study.mp4 (2.57 MB)
MP4
1 Course Overview.mp4 (3.96 MB)
MP4
01 Module Overview.mp4 (2.08 MB)
MP4
02 Prerequisites and Course Outline.mp4 (1.67 MB)
MP4
03 Rule-based vs ML-based Learning.mp4 (11.32 MB)
MP4
04 Traditional ML vs Representation ML.mp4 (5.86 MB)
MP4
05 The Machine Learning Workflow.mp4 (5.06 MB)
MP4
06 Choosing the Right Model Based on Data.mp4 (8.73 MB)
MP4
07 Supervised vs Unsupervised Learning.mp4 (7.76 MB)
MP4
08 Transfer Learning, Cold Start ML and Warm Start ML.mp4 (8.4 MB)
MP4
09 Popular Machine Learning Frameworks.mp4 (5.44 MB)
MP4
10 Demo - Getting Started with scikit-learn.mp4 (3.72 MB)
MP4
11 Module Summary.mp4 (2.23 MB)
MP4
01 Module Overview.mp4 (1.99 MB)
MP4
02 Building and Evaluating Regression Models.mp4 (7.8 MB)
MP4
03 Demo - Linear Regression Using Numeric Features.mp4 (15.19 MB)
MP4
04 Demo - Exploring Regression Data.mp4 (8.37 MB)
MP4
05 Demo - Preprocessing Numeric and Categorical Data and Fitting a Regression Model.mp4 (8.95 MB)
MP4
06 Choosing Regression Algorithms.mp4 (4.31 MB)
MP4
07 Regularized Regression Models - Lasso, Ridge, and Elastic Net.mp4 (6.09 MB)
MP4
08 Stochastic Gradient Descent.mp4 (3.6 MB)
MP4
09 Demo - Multiple Types of Regression.mp4 (10.48 MB)
MP4
10 Module Summary.mp4 (2.18 MB)
MP4
01 Module Overview.mp4 (1.89 MB)
MP4
02 Types of Classifiers.mp4 (6.6 MB)
MP4
03 Understanding Logistic Regression Intuitively.mp4 (8.38 MB)
MP4
04 Demo - Building and Training a Binary Classification Model.mp4 (11.85 MB)
MP4
05 Understanding Support Vector and Nearest Neighbors Classification.mp4 (6.34 MB)
MP4
06 Understanding Decision Tree and Naive Bayes Classification.mp4 (8.29 MB)
MP4
07 Demo - Building Classification Models Using Multiple Techniques.mp4 (13.24 MB)
MP4
08 Demo - Using Warm Start with an Ensemble Classifier.mp4 (5.69 MB)
MP4
09 Demo - Performing Multiclass Classification on Text Data.mp4 (12.84 MB)
MP4
10 Module Summary.mp4 (1.66 MB)
MP4
01 Module Overview.mp4 (1.85 MB)
MP4
02 Clustering as an Unsupervised Learning Technique.mp4 (6.53 MB)
MP4
03 Choosing Clustering Algorithms.mp4 (6.27 MB)
MP4
04 Categorizing Clustering Algorithms.mp4 (4.81 MB)
MP4
05 K-means Clustering.mp4 (4.19 MB)
MP4
06 Hierarchical Clustering.mp4 (5.72 MB)
MP4
07 Demo - Performing K-means Clustering on Unlabeled Data.mp4 (10.19 MB)
MP4
08 Demo - Clustering Using Labeled Data.mp4 (15.61 MB)
MP4
09 Demo - Agglomerative Clustering.mp4 (18.2 MB)
MP4
10 Summary and Further Study.mp4 (2.1 MB)
MP4
1 Course Overview.mp4 (3.28 MB)
MP4
2 Version Check.mp4 (550.5 KB)
MP4
01 Module Overview.mp4 (2.32 MB)
MP4
02 Prerequisites and Course Outline.mp4 (1.83 MB)
MP4
03 The Classic Machine Learning Workflow.mp4 (5.1 MB)
MP4
04 New Realities of Deployed Models.mp4 (10.38 MB)
MP4
05 Overfitting.mp4 (6.6 MB)
MP4
06 Training-serving Skew.mp4 (9.56 MB)
MP4
07 Concept Drift.mp4 (9.44 MB)
MP4
08 Concerted Adversaries.mp4 (3.66 MB)
MP4
09 Deploying Machine Learning Models.mp4 (3.74 MB)
MP4
10 Module Summary.mp4 (2.25 MB)
MP4
01 Module Overview.mp4 (1.77 MB)
MP4
02 Serializing Model Parameters.mp4 (5.04 MB)
MP4
03 Demo - Serializing and Deserializing Models Using JSON.mp4 (15.96 MB)
MP4
04 Demo - Using Pickle and Joblib to Serialize and Deserialize Models.mp4 (10.57 MB)
MP4
05 Demo - Checkpointing Models and Resuming Training from a Checkpoint.mp4 (11.91 MB)
MP4
06 Demo - Serializing Pre-processors and Models.mp4 (11.36 MB)
MP4
07 Demo - Serializing Pipelines.mp4 (4.03 MB)
MP4
08 Using Flask for Model Deployment.mp4 (3.19 MB)
MP4
09 Demo - Deploying a Model for Prediction Using Flask.mp4 (13.1 MB)
MP4
10 Module Summary.mp4 (1.93 MB)
MP4
1 Module Overview.mp4 (2.14 MB)
MP4
2 Event-driven Serverless Compute.mp4 (7.53 MB)
MP4
3 Demo - Serializing Classification Models.mp4 (8.03 MB)
MP4
4 Demo - Uploading Pickle Files to Cloud Storage.mp4 (11.28 MB)
MP4
5 Demo - Deploying a Model to Google Cloud Functions.mp4 (13.53 MB)
MP4
6 Demo - Performing Predictions Using Cloud Functions.mp4 (9.46 MB)
MP4
7 Module Summary.mp4 (1.86 MB)
MP4
01 Module Overview.mp4 (2.01 MB)
MP4
02 Introducing the Google AI Platform.mp4 (9.79 MB)
MP4
03 Demo - Getting Started with Cloud AI Platform.mp4 (7.13 MB)
MP4
04 Demo - Creating a Model and a Version.mp4 (10.4 MB)
MP4
05 Demo - Scheduling an Evaluation Job to Sample Prediction Instances.mp4 (12.34 MB)
MP4
06 Demo - Testing the Deployed Model Using the Web Console.mp4 (6 MB)
MP4
07 Demo - Model Predictions Using the gcloud Command Line Utility.mp4 (6.16 MB)
MP4
08 Demo - Invoking the Predictions API Using cURL.mp4 (10.67 MB)
MP4
09 Demo - Monitoring Deployed Models Using Stackdriver.mp4 (18.04 MB)
MP4
10 Module Summary.mp4 (2.05 MB)
MP4
01 Module Overview.mp4 (2.17 MB)
MP4
02 Introducing Amazon SageMaker.mp4 (3.68 MB)
MP4
03 Training a Model on SageMaker.mp4 (4.31 MB)
MP4
04 Deploying a Model on SageMaker.mp4 (5.65 MB)
MP4
05 Demo - Creating a SageMaker Notebook Instance.mp4 (14.59 MB)
MP4
06 Demo - Getting Started with SageMaker for Distributed Training.mp4 (5.81 MB)
MP4
07 Demo - Tensor Flow Script for Distributed Training.mp4 (15.59 MB)
MP4
08 Demo - Distributed Training Using the SageMaker Tensor Flow Estimator.mp4 (17.27 MB)
MP4
09 Demo - Deploying the Model for Predictions.mp4 (14.75 MB)
MP4
10 Demo - Auditing and Compliance Using Cloud Trail.mp4 (10.15 MB)
MP4
11 Summary and Further Study.mp4 (2.53 MB)
MP4
MP4
1 Overview.mp4 (1.92 MB)
MP4
2 What to Expect.mp4 (1.47 MB)
MP4
3 On Machine Learning.mp4 (5.87 MB)
MP4
4 What Is Different About Machine Learning.mp4 (4.03 MB)
MP4
5 Learning Types.mp4 (11.29 MB)
MP4
6 Machine Learning Pipeline.mp4 (9.47 MB)
MP4
7 Problem Definition.mp4 (4.73 MB)
MP4
8 Introducing Google Collaboratory.mp4 (8.3 MB)
MP4
9 Summary.mp4 (1.2 MB)
MP4
1 Overview.mp4 (1.45 MB)
MP4
2 Revisiting ML Pipeline.mp4 (1.5 MB)
MP4
3 Understanding Data Sourcing.mp4 (8.29 MB)
MP4
4 CSV Format.mp4 (1.93 MB)
MP4
5 Understanding SciPy.mp4 (6.54 MB)
MP4
6 Demo - Loading Data into Pandas.mp4 (8.88 MB)
MP4
7 Summary.mp4 (1.12 MB)
MP4
01 Overview.mp4 (1.4 MB)
MP4
02 Revisiting ML Pipeline.mp4 (2.14 MB)
MP4
03 Introducing Data Analysis.mp4 (5.5 MB)
MP4
04 Univariant Numerical Analysis.mp4 (12.54 MB)
MP4
05 Bivariant Numerical Analysis.mp4 (7.93 MB)
MP4
06 Demo - Descriptive Stats - Part One.mp4 (14.14 MB)
MP4
07 Demo - Descriptive Stats - Part Two.mp4 (10.01 MB)
MP4
08 Data Visualization.mp4 (10.63 MB)
MP4
09 Demo - Data Visualization - Part One.mp4 (11.67 MB)
MP4
10 Demo - Data Visualization - Part Two.mp4 (10.4 MB)
MP4
11 Summary.mp4 (1021.43 KB)
MP4
01 Overview.mp4 (1.88 MB)
MP4
02 Revisting ML Pipeline.mp4 (2.81 MB)
MP4
03 Data Scaling - The Problem.mp4 (11.24 MB)
MP4
04 Data Scaling - The Solution.mp4 (4.32 MB)
MP4
05 The Need for Data Segregation.mp4 (5.94 MB)
MP4
06 Train Test Split.mp4 (5.05 MB)
MP4
07 KFlod Cross Validation.mp4 (5.25 MB)
MP4
08 Welcoming scikit-learn.mp4 (3.67 MB)
MP4
09 Demo - Data Segregation Techniques.mp4 (8.48 MB)
MP4
10 Summary.mp4 (1.71 MB)
MP4
01 Overview.mp4 (1.5 MB)
MP4
02 Revisiting ML Pipeline.mp4 (1.72 MB)
MP4
03 Scoping Your Focus.mp4 (9.7 MB)
MP4
04 Introducing Derivatives.mp4 (6.81 MB)
MP4
05 Linear Regression.mp4 (5.49 MB)
MP4
06 Variance Bias Tradeoff.mp4 (8.58 MB)
MP4
07 Other Regression Algorithms.mp4 (3.19 MB)
MP4
08 Model Evaluation.mp4 (4.32 MB)
MP4
09 Demo - Deploying and Testing the Model - Part 1.mp4 (18.61 MB)
MP4
10 Demo - Deploying and Testing the Model - Part 2.mp4 (15.76 MB)
MP4
11 Summary.mp4 (2.87 MB)
MP4
1 Overview.mp4 (1.74 MB)
MP4
2 Handling Features.mp4 (2.95 MB)
MP4
3 Model Improvement.mp4 (2.14 MB)
MP4
4 Automated ML.mp4 (6.45 MB)
MP4
5 Operationalization.mp4 (2.63 MB)
MP4
6 Team Data Science Process.mp4 (4.21 MB)
MP4
7 Summary.mp4 (3.74 MB)
MP4
1 Course Overview.mp4 (3.23 MB)
MP4
01 Version Check.mp4 (552.03 KB)
MP4
02 Module Overview.mp4 (1.93 MB)
MP4
03 Prerequisites and Course Outline.mp4 (2.27 MB)
MP4
04 The Need for Data Preparation.mp4 (6.1 MB)
MP4
05 Insufficient Data.mp4 (10.02 MB)
MP4
06 Too Much Data.mp4 (6.35 MB)
MP4
07 Non-representative Data, Missing Values, Outliers, Duplicates.mp4 (3.55 MB)
MP4
08 Dealing with Missing Data.mp4 (7.56 MB)
MP4
09 Dealing with Outliers.mp4 (8.17 MB)
MP4
10 Oversampling and Undersampling to Balance Datasets.mp4 (7.13 MB)
MP4
11 Overfitting and Underfitting.mp4 (4.24 MB)
MP4
12 Module Summary.mp4 (2.14 MB)
MP4
01 Module Overview.mp4 (1.83 MB)
MP4
02 Handling Missing Values.mp4 (12.87 MB)
MP4
03 Cleaning Data.mp4 (15.02 MB)
MP4
04 Visualizing Relationships.mp4 (8.4 MB)
MP4
05 Building a Regression Model.mp4 (14.85 MB)
MP4
06 Univariate Feature Imputation Using the Simple Imputer.mp4 (14.99 MB)
MP4
07 Multivariate Feature Imputation Using the Iterative Imputer.mp4 (12.14 MB)
MP4
08 Missing Value Indicator.mp4 (3.97 MB)
MP4
09 Feature Imputation as a Part of an Machine Learning Pipeline.mp4 (7.85 MB)
MP4
10 Module Summary.mp4 (2.06 MB)
MP4
01 Module Overview.mp4 (3.97 MB)
MP4
02 Numeric Data.mp4 (8.04 MB)
MP4
03 Scaling and Standardizing Features.mp4 (9.3 MB)
MP4
04 Normalizing and Binarizing Features.mp4 (12.24 MB)
MP4
05 Categorical Data.mp4 (4.89 MB)
MP4
06 Numeric Encoding of Categorical Data.mp4 (7.27 MB)
MP4
07 Label Encoding and One-hot Encoding.mp4 (15.24 MB)
MP4
08 Discretization of Continuous Values Using Pandas Cut.mp4 (6.48 MB)
MP4
09 Discretization of Continuous Values Using the KBins Discretizer.mp4 (7.42 MB)
MP4
10 Building a Regression Model with Discretized Data.mp4 (6.72 MB)
MP4
11 Module Summary.mp4 (1.88 MB)
MP4
1 Module Overview.mp4 (1.82 MB)
MP4
2 The Curse of Dimensionality.mp4 (7.77 MB)
MP4
3 Reducing Complexity in Data.mp4 (4.73 MB)
MP4
4 Feature Selection to Reduce Dimensions.mp4 (5.56 MB)
MP4
5 Filter Methods.mp4 (6.39 MB)
MP4
6 Embedded Methods.mp4 (7.64 MB)
MP4
7 Module Summary.mp4 (2.04 MB)
MP4
1 Module Overview.mp4 (1.84 MB)
MP4
2 Feature Correlations.mp4 (17.28 MB)
MP4
3 Using the Correlation Matrix to Detect Multi-collinearity.mp4 (10.35 MB)
MP4
4 Using Variance Inflation Factor to Detect Multi-collinearity.mp4 (6.57 MB)
MP4
5 Features Selection Using Missing Values Threshold and Variance Threshold.mp4 (13.08 MB)
MP4
6 Univariate Feature Selection Using Chi2 and ANOVA.mp4 (14.09 MB)
MP4
7 Feature Selection Using Wrapper Methods.mp4 (16.17 MB)
MP4
8 Feature Selection Using Embedded Methods.mp4 (7.74 MB)
MP4
9 Module Summary.mp4 (1.98 MB)
MP4
1 Course Overview.mp4 (3.22 MB)
MP4
01 Module Overview.mp4 (1.9 MB)
MP4
02 Prerequisites and Course Outline.mp4 (2.53 MB)
MP4
03 A Case Study - Sentiment Analysis.mp4 (10.11 MB)
MP4
04 Sentiment Analysis as a Binary Classification Problem.mp4 (3.59 MB)
MP4
05 Rule Based vs ML Based Analysis.mp4 (9.98 MB)
MP4
06 Traditional Machine Learning Systems.mp4 (6.82 MB)
MP4
07 Representation Machine Learning Systems.mp4 (3.76 MB)
MP4
08 Deep Learning and Neural Networks.mp4 (8.48 MB)
MP4
09 Traditional ML vs Deep Learning.mp4 (4.91 MB)
MP4
10 Traditional ML Algorithms and Neural Network Design.mp4 (6.68 MB)
MP4
11 Module Summary.mp4 (2.1 MB)
MP4
1 Module Overview.mp4 (1.95 MB)
MP4
2 Choosing the Right Machine Learning Problem.mp4 (9.91 MB)
MP4
3 Supervised and Unsupervised Learning.mp4 (13.05 MB)
MP4
4 Reinforcement Learning.mp4 (10.86 MB)
MP4
5 Recommendation Systems.mp4 (6.7 MB)
MP4
6 Module Summary.mp4 (2.17 MB)
MP4
01 Module Overview.mp4 (2.89 MB)
MP4
02 Regression Models.mp4 (3.44 MB)
MP4
03 Choosing Regression Algorithms.mp4 (6.62 MB)
MP4
04 Evaluating Regression Models.mp4 (8.08 MB)
MP4
05 Types of Classification.mp4 (6.02 MB)
MP4
06 Choosing Classification Algorithms.mp4 (4.72 MB)
MP4
07 Evaluating Classifiers.mp4 (6.41 MB)
MP4
08 Clustering Models.mp4 (8.96 MB)
MP4
09 The Curse of Dimensionality.mp4 (8.58 MB)
MP4
10 Dimensionality Reduction Techniques.mp4 (4.21 MB)
MP4
11 Module Summary.mp4 (1.81 MB)
MP4
01 Module Overview.mp4 (1.99 MB)
MP4
02 Install and Set Up.mp4 (3.57 MB)
MP4
03 Exploring the Regression Dataset.mp4 (5.81 MB)
MP4
04 Simple Regression Using Analytical and Machine Learning Techniques.mp4 (10.61 MB)
MP4
05 Multiple Regression Using Analytical and Machine Learning Techniques.mp4 (4.73 MB)
MP4
06 Exploring the Classification Dataset.mp4 (7.77 MB)
MP4
07 Classification Using Logistic Regression.mp4 (10.48 MB)
MP4
08 Classification Using Decision Trees.mp4 (6.8 MB)
MP4
09 Clustering Using K-means.mp4 (15.06 MB)
MP4
10 Dimensionality Reduction Using Principal Component Analysis.mp4 (9.28 MB)
MP4
11 Dimensionality Reduction Using Manifold Learning.mp4 (13.19 MB)
MP4
12 Module Summary.mp4 (2.1 MB)
MP4
1 Module Overview.mp4 (1.77 MB)
MP4
2 The Machine Learning Workflow.mp4 (6.75 MB)
MP4
3 Case Study - PyTorch on the Cloud.mp4 (8.32 MB)
MP4
4 Ensemble Learning.mp4 (10.05 MB)
MP4
5 Averaging and Boosting, Voting and Stacking.mp4 (3.68 MB)
MP4
6 Custom Neural Networks - Their Characteristics and Applications.mp4 (5.83 MB)
MP4
7 Module Summary.mp4 (1.98 MB)
MP4
1 Module Overview.mp4 (1.71 MB)
MP4
2 Classification Using Hard Voting and Soft Voting.mp4 (11.33 MB)
MP4
3 Exploring and Preprocessing the Regression Dataset.mp4 (6.4 MB)
MP4
4 Regression Using Bagging and Pasting.mp4 (9.81 MB)
MP4
5 Regression Using Gradient Boosting.mp4 (9.02 MB)
MP4
6 Regression Using Neural Networks.mp4 (14.34 MB)
MP4
7 Summary and Further Study.mp4 (2.57 MB)
MP4
1 Course Overview.mp4 (3.96 MB)
MP4
01 Module Overview.mp4 (2.08 MB)
MP4
02 Prerequisites and Course Outline.mp4 (1.67 MB)
MP4
03 Rule-based vs ML-based Learning.mp4 (11.32 MB)
MP4
04 Traditional ML vs Representation ML.mp4 (5.86 MB)
MP4
05 The Machine Learning Workflow.mp4 (5.06 MB)
MP4
06 Choosing the Right Model Based on Data.mp4 (8.73 MB)
MP4
07 Supervised vs Unsupervised Learning.mp4 (7.76 MB)
MP4
08 Transfer Learning, Cold Start ML and Warm Start ML.mp4 (8.4 MB)
MP4
09 Popular Machine Learning Frameworks.mp4 (5.44 MB)
MP4
10 Demo - Getting Started with scikit-learn.mp4 (3.72 MB)
MP4
11 Module Summary.mp4 (2.23 MB)
MP4
01 Module Overview.mp4 (1.99 MB)
MP4
02 Building and Evaluating Regression Models.mp4 (7.8 MB)
MP4
03 Demo - Linear Regression Using Numeric Features.mp4 (15.19 MB)
MP4
04 Demo - Exploring Regression Data.mp4 (8.37 MB)
MP4
05 Demo - Preprocessing Numeric and Categorical Data and Fitting a Regression Model.mp4 (8.95 MB)
MP4
06 Choosing Regression Algorithms.mp4 (4.31 MB)
MP4
07 Regularized Regression Models - Lasso, Ridge, and Elastic Net.mp4 (6.09 MB)
MP4
08 Stochastic Gradient Descent.mp4 (3.6 MB)
MP4
09 Demo - Multiple Types of Regression.mp4 (10.48 MB)
MP4
10 Module Summary.mp4 (2.18 MB)
MP4
01 Module Overview.mp4 (1.89 MB)
MP4
02 Types of Classifiers.mp4 (6.6 MB)
MP4
03 Understanding Logistic Regression Intuitively.mp4 (8.38 MB)
MP4
04 Demo - Building and Training a Binary Classification Model.mp4 (11.85 MB)
MP4
05 Understanding Support Vector and Nearest Neighbors Classification.mp4 (6.34 MB)
MP4
06 Understanding Decision Tree and Naive Bayes Classification.mp4 (8.29 MB)
MP4
07 Demo - Building Classification Models Using Multiple Techniques.mp4 (13.24 MB)
MP4
08 Demo - Using Warm Start with an Ensemble Classifier.mp4 (5.69 MB)
MP4
09 Demo - Performing Multiclass Classification on Text Data.mp4 (12.84 MB)
MP4
10 Module Summary.mp4 (1.66 MB)
MP4
01 Module Overview.mp4 (1.85 MB)
MP4
02 Clustering as an Unsupervised Learning Technique.mp4 (6.53 MB)
MP4
03 Choosing Clustering Algorithms.mp4 (6.27 MB)
MP4
04 Categorizing Clustering Algorithms.mp4 (4.81 MB)
MP4
05 K-means Clustering.mp4 (4.19 MB)
MP4
06 Hierarchical Clustering.mp4 (5.72 MB)
MP4
07 Demo - Performing K-means Clustering on Unlabeled Data.mp4 (10.19 MB)
MP4
08 Demo - Clustering Using Labeled Data.mp4 (15.61 MB)
MP4
09 Demo - Agglomerative Clustering.mp4 (18.2 MB)
MP4
10 Summary and Further Study.mp4 (2.1 MB)
MP4
1 Course Overview.mp4 (3.28 MB)
MP4
2 Version Check.mp4 (550.5 KB)
MP4
01 Module Overview.mp4 (2.32 MB)
MP4
02 Prerequisites and Course Outline.mp4 (1.83 MB)
MP4
03 The Classic Machine Learning Workflow.mp4 (5.1 MB)
MP4
04 New Realities of Deployed Models.mp4 (10.38 MB)
MP4
05 Overfitting.mp4 (6.6 MB)
MP4
06 Training-serving Skew.mp4 (9.56 MB)
MP4
07 Concept Drift.mp4 (9.44 MB)
MP4
08 Concerted Adversaries.mp4 (3.66 MB)
MP4
09 Deploying Machine Learning Models.mp4 (3.74 MB)
MP4
10 Module Summary.mp4 (2.25 MB)
MP4
01 Module Overview.mp4 (1.77 MB)
MP4
02 Serializing Model Parameters.mp4 (5.04 MB)
MP4
03 Demo - Serializing and Deserializing Models Using JSON.mp4 (15.96 MB)
MP4
04 Demo - Using Pickle and Joblib to Serialize and Deserialize Models.mp4 (10.57 MB)
MP4
05 Demo - Checkpointing Models and Resuming Training from a Checkpoint.mp4 (11.91 MB)
MP4
06 Demo - Serializing Pre-processors and Models.mp4 (11.36 MB)
MP4
07 Demo - Serializing Pipelines.mp4 (4.03 MB)
MP4
08 Using Flask for Model Deployment.mp4 (3.19 MB)
MP4
09 Demo - Deploying a Model for Prediction Using Flask.mp4 (13.1 MB)
MP4
10 Module Summary.mp4 (1.93 MB)
MP4
1 Module Overview.mp4 (2.14 MB)
MP4
2 Event-driven Serverless Compute.mp4 (7.53 MB)
MP4
3 Demo - Serializing Classification Models.mp4 (8.03 MB)
MP4
4 Demo - Uploading Pickle Files to Cloud Storage.mp4 (11.28 MB)
MP4
5 Demo - Deploying a Model to Google Cloud Functions.mp4 (13.53 MB)
MP4
6 Demo - Performing Predictions Using Cloud Functions.mp4 (9.46 MB)
MP4
7 Module Summary.mp4 (1.86 MB)
MP4
01 Module Overview.mp4 (2.01 MB)
MP4
02 Introducing the Google AI Platform.mp4 (9.79 MB)
MP4
03 Demo - Getting Started with Cloud AI Platform.mp4 (7.13 MB)
MP4
04 Demo - Creating a Model and a Version.mp4 (10.4 MB)
MP4
05 Demo - Scheduling an Evaluation Job to Sample Prediction Instances.mp4 (12.34 MB)
MP4
06 Demo - Testing the Deployed Model Using the Web Console.mp4 (6 MB)
MP4
07 Demo - Model Predictions Using the gcloud Command Line Utility.mp4 (6.16 MB)
MP4
08 Demo - Invoking the Predictions API Using cURL.mp4 (10.67 MB)
MP4
09 Demo - Monitoring Deployed Models Using Stackdriver.mp4 (18.04 MB)
MP4
10 Module Summary.mp4 (2.05 MB)
MP4
01 Module Overview.mp4 (2.17 MB)
MP4
02 Introducing Amazon SageMaker.mp4 (3.68 MB)
MP4
03 Training a Model on SageMaker.mp4 (4.31 MB)
MP4
04 Deploying a Model on SageMaker.mp4 (5.65 MB)
MP4
05 Demo - Creating a SageMaker Notebook Instance.mp4 (14.59 MB)
MP4
06 Demo - Getting Started with SageMaker for Distributed Training.mp4 (5.81 MB)
MP4
07 Demo - Tensor Flow Script for Distributed Training.mp4 (15.59 MB)
MP4
08 Demo - Distributed Training Using the SageMaker Tensor Flow Estimator.mp4 (17.27 MB)
MP4
09 Demo - Deploying the Model for Predictions.mp4 (14.75 MB)
MP4
10 Demo - Auditing and Compliance Using Cloud Trail.mp4 (10.15 MB)
MP4
11 Summary and Further Study.mp4 (2.53 MB)
MP4
Code:
Bitte
Anmelden
oder
Registrieren
um Code Inhalt zu sehen!
Code:
Bitte
Anmelden
oder
Registrieren
um Code Inhalt zu sehen!
Code:
Bitte
Anmelden
oder
Registrieren
um Code Inhalt zu sehen!