Pluralsight - Building Deep Learning Solutions with PyTorch

0dayddl

U P L O A D E R

359020115_tuto.jpg


Download Free Download : Pluralsight - Building Deep Learning Solutions with PyTorch
mp4 | Video: h264,1280X720 | Audio: AAC, 44.1 KHz
Genre:eLearning | Language: English | Size:2.51 GB

Files Included :
1 Course Overview.mp4 (3.7 MB)
MP4
01 Version Check.mp4 (550.56 KB)
MP4
02 Module Overview.mp4 (1.3 MB)
MP4
03 Prerequisites and Course Outline.mp4 (2.8 MB)
MP4
04 Representation Learning Using Neural Networks.mp4 (10.35 MB)
MP4
05 Neuron as a Mathematical Function.mp4 (9.26 MB)
MP4
06 Activation Functions.mp4 (7.32 MB)
MP4
07 Introducing PyTorch.mp4 (5.73 MB)
MP4
08 TensorFlow and PyTorch.mp4 (6.75 MB)
MP4
09 Demo - PyTorch Install and Setup.mp4 (9.51 MB)
MP4
10 Summary.mp4 (1.4 MB)
MP4
01 Module Overview.mp4 (3.21 MB)
MP4
02 Demo - Creating and Initializing Tensors.mp4 (13.19 MB)
MP4
03 Demo - Simple Operations on Tensors.mp4 (10.82 MB)
MP4
04 Demo - Elementwise and Matrix Operations on Tensors.mp4 (7.69 MB)
MP4
05 Demo - Converting between PyTorch Tensors and NumPy Arrays.mp4 (8.39 MB)
MP4
06 PyTorch Support for CUDA Devices.mp4 (9.47 MB)
MP4
07 Demo - Setting up a Deep Learning VM to Work with GPUs.mp4 (15.47 MB)
MP4
08 Demo - Creating Tensors on CUDA-enabled Devices.mp4 (6.93 MB)
MP4
09 Demo - Working with the Device Context Manager.mp4 (9.23 MB)
MP4
10 Summary.mp4 (1.54 MB)
MP4
01 Module Overview.mp4 (1.54 MB)
MP4
02 Gradient Descent Optimization.mp4 (6.32 MB)
MP4
03 Forward and Backward Passes.mp4 (4.92 MB)
MP4
04 Calculating Gradients.mp4 (7.31 MB)
MP4
05 Using Gradients to Update Model Parameters.mp4 (5.9 MB)
MP4
06 Two Passes in Reverse Mode Automatic Differentiation.mp4 (5.99 MB)
MP4
07 Demo - Introducing Autograd.mp4 (10.08 MB)
MP4
08 Demo - Working with Gradients.mp4 (7.61 MB)
MP4
09 Demo - Variables and Tensors.mp4 (3.64 MB)
MP4
10 Demo - Training a Linear Model Using Autograd.mp4 (15.4 MB)
MP4
11 Summary.mp4 (2.07 MB)
MP4
01 Module Overview.mp4 (883.38 KB)
MP4
02 Static vs Dynamic Computation Graphs.mp4 (11.53 MB)
MP4
03 Dynamic Computation Graphs in PyTorch.mp4 (1.83 MB)
MP4
04 Demo - Installing Tensorflow, Graphviz, and Hidden Layer.mp4 (3.04 MB)
MP4
05 Demo - Building Dynamic Computations Graphs with PyTorch.mp4 (4.14 MB)
MP4
06 Demo - Visualizing Neural Networks in PyTorch Using Hidden Layer.mp4 (5.35 MB)
MP4
07 Demo - Building Static Computation Graphs with Tensorflow.mp4 (11.05 MB)
MP4
08 Demo - Visualizing Tensorflow Graphs with Tensorboard.mp4 (3.92 MB)
MP4
09 Demo - Dynamic Computation Graphs in Tensorflow with Eager Execution.mp4 (5.98 MB)
MP4
10 Debugging in PyTorch and Tensorflow.mp4 (2.13 MB)
MP4
11 Summary and Further Study.mp4 (2.27 MB)
MP4
1 Course Overview.mp4 (3.81 MB)
MP4
01 Version Check.mp4 (560.53 KB)
MP4
02 Module Overview.mp4 (1.63 MB)
MP4
03 Prerequisites and Course Outline.mp4 (1.99 MB)
MP4
04 CUDA Support in PyTorch.mp4 (10.08 MB)
MP4
05 Exploring PyTorch Install Options on a Local Machine.mp4 (4.38 MB)
MP4
06 Setting up a Virtual Machine.mp4 (9.41 MB)
MP4
07 Installing PyTorch with CPU Support Using Conda.mp4 (19.17 MB)
MP4
08 Installing PyTorch with CPU Support Using Pip.mp4 (10.37 MB)
MP4
09 Adding GPU Support to the VM and Installing the CUDA Toolkit.mp4 (15.1 MB)
MP4
10 Installing PyTorch with GPU Support Using Conda.mp4 (9.74 MB)
MP4
11 Installing PyTorch with CUDA Support Using Pip.mp4 (5.37 MB)
MP4
12 Module Summary.mp4 (1.87 MB)
MP4
1 Module Overview.mp4 (1.77 MB)
MP4
2 Linear Regression.mp4 (6.28 MB)
MP4
3 Finding the Best Fit Line.mp4 (5.23 MB)
MP4
4 Gradient Descent.mp4 (7.27 MB)
MP4
5 Training a Simple Neural Network with One Neuron.mp4 (12.18 MB)
MP4
7 Preventing Overfitting Using Regularization.mp4 (7.32 MB)
MP4
9 Module Summary.mp4 (2.3 MB)
MP4
01 Module Overview.mp4 (1.73 MB)
MP4
02 Training a Neural Network Forward and Backward Passes.mp4 (4.16 MB)
MP4
03 Optimizers.mp4 (5.76 MB)
MP4
04 Building a Neural Network Using PyTorch Layers.mp4 (10.46 MB)
MP4
05 Training a Neural Network Using Optimizers.mp4 (4.77 MB)
MP4
06 Dropout.mp4 (5.66 MB)
MP4
07 Epochs and Batches.mp4 (2.59 MB)
MP4
08 Exploring the Bike Sharing Dataset.mp4 (11.75 MB)
MP4
09 Using Datasets and Data Loaders in PyTorch.mp4 (5.38 MB)
MP4
10 Building and Train a Neural Network for Bike Sharing Demand Prediction.mp4 (11.88 MB)
MP4
11 Working with Different Neural Network Architectures.mp4 (9.11 MB)
MP4
12 Module Summary.mp4 (1.95 MB)
MP4
01 Module Overview.mp4 (1.77 MB)
MP4
02 Softmax and Cross Entropy.mp4 (6.67 MB)
MP4
03 Softmax and LogSoftmax.mp4 (4.48 MB)
MP4
04 Evaluating Classifiers.mp4 (3.28 MB)
MP4
05 Exploring the Graduate Admissions Dataset.mp4 (9.86 MB)
MP4
06 Preprocessing the Data.mp4 (8.19 MB)
MP4
07 Building a Custom Neural Network.mp4 (10.65 MB)
MP4
08 Training and Evaluating the Neural Network.mp4 (8 MB)
MP4
09 Customizing and Evaluating Different Models.mp4 (10.53 MB)
MP4
10 Summary and Further Study.mp4 (2.32 MB)
MP4
1 Course Overview.mp4 (2.92 MB)
MP4
01 Version Check.mp4 (577.35 KB)
MP4
02 Module Overview.mp4 (1.28 MB)
MP4
03 Prerequisites and Course Outline.mp4 (1.82 MB)
MP4
04 Machine Learning on the Cloud.mp4 (3.83 MB)
MP4
05 PyTorch - Taxonomy of Solutions.mp4 (4.76 MB)
MP4
06 Introducing SageMaker.mp4 (3.83 MB)
MP4
07 Creating a SageMaker Notebook Instance.mp4 (17.35 MB)
MP4
08 Prototyping a PyTorch Model on SageMaker Notebooks.mp4 (18.17 MB)
MP4
09 PyTorch Estimators on SageMaker.mp4 (2.34 MB)
MP4
10 Distributed Data Loading in PyTorch.mp4 (13.62 MB)
MP4
11 Distributed Training in PyTorch.mp4 (17.78 MB)
MP4
12 Using PyTorch Estimators for Distributed Training.mp4 (16.23 MB)
MP4
13 Model Deployment and Prediction Using Estimators.mp4 (10.28 MB)
MP4
14 AWS Deep Learning AMIs.mp4 (2.61 MB)
MP4
15 Instantiating a Deep Learning VM.mp4 (18.57 MB)
MP4
16 Building Models with GPU Support on the AWS Deep Learning VM.mp4 (13.2 MB)
MP4
01 Module Overview.mp4 (1.42 MB)
MP4
02 Introducing Azure Machine Learning Service.mp4 (2.64 MB)
MP4
03 Prototyping PyTorch Models on Azure Notebooks.mp4 (16.01 MB)
MP4
04 Azure Machine Learning Service Workflow.mp4 (4.5 MB)
MP4
05 Understanding Terms in Azure Machine Learning.mp4 (3.81 MB)
MP4
06 Horovod for Distributed Training.mp4 (1.84 MB)
MP4
07 Distributed Training in PyTorch Using the Horovod Framework.mp4 (22.73 MB)
MP4
08 Instantiating the PyTorch Estimator for Distributed Training.mp4 (17.23 MB)
MP4
09 Distributed Run Using the PyTorch Estimator.mp4 (11.05 MB)
MP4
10 The Azure Deep Learning VM.mp4 (2.52 MB)
MP4
11 Instantiating an Azure Deep Learning VM.mp4 (15.53 MB)
MP4
12 Building PyTorch Models with GPU Support on Azure Deep Learning VMs.mp4 (12.95 MB)
MP4
1 Module Overview.mp4 (1004.95 KB)
MP4
2 Cloud Datalab and Deep Learning VMs.mp4 (4.11 MB)
MP4
3 Setting up a Cloud Datalab VM.mp4 (16.9 MB)
MP4
4 Prototyping PyTorch Models Using Cloud Datalab.mp4 (5.43 MB)
MP4
6 Using JupyterLab on a GCP Deep Learning VM.mp4 (4.64 MB)
MP4
7 Summary and Further Study.mp4 (2.04 MB)
MP4
1 Course Overview.mp4 (3.44 MB)
MP4
01 Version Check.mp4 (564.49 KB)
MP4
02 Module Overview.mp4 (1.71 MB)
MP4
03 Prerequisites and Course Outline.mp4 (2.3 MB)
MP4
04 Single Channel and Multichannel Images.mp4 (6.47 MB)
MP4
05 Preprocessing Images to Train Robust Models.mp4 (8.46 MB)
MP4
06 Setting up a Deep Learning VM.mp4 (12.06 MB)
MP4
07 Image Preprocessing - Resizing and Rescaling Images.mp4 (12.74 MB)
MP4
08 Cropping and Denoising Images.mp4 (11.21 MB)
MP4
09 Standardizing Images in PyTorch.mp4 (8.89 MB)
MP4
10 ZCA Whitening to Decorrelate Features.mp4 (5.5 MB)
MP4
11 Image Transformations Using PyTorch Libraries.mp4 (5.72 MB)
MP4
12 Normalizing Images Using Mean and Standard Deviation.mp4 (10.31 MB)
MP4
13 Module Summary.mp4 (1.81 MB)
MP4
1 Module Overview.mp4 (2.25 MB)
MP4
2 Deep Neural Networks to Work with Images.mp4 (10.8 MB)
MP4
3 Loading and Processing MNIST Images.mp4 (11.78 MB)
MP4
6 Module Summary.mp4 (1.81 MB)
MP4
1 Module Overview.mp4 (1.76 MB)
MP4
2 Local Receptive Fields.mp4 (4.28 MB)
MP4
3 Understanding Convolution.mp4 (5.98 MB)
MP4
4 Convolutional Layers.mp4 (11.06 MB)
MP4
5 Pooling Layers.mp4 (6.38 MB)
MP4
6 Typical CNN Architecture.mp4 (5.89 MB)
MP4
7 Applying Convolutional and Pooling Layers.mp4 (17.28 MB)
MP4
8 Module Summary.mp4 (1.77 MB)
MP4
01 Module Overview.mp4 (2 MB)
MP4
02 Zero Padding and Stride Size.mp4 (6.49 MB)
MP4
03 Batch Normalization.mp4 (7.18 MB)
MP4
04 Activation Functions.mp4 (3.72 MB)
MP4
05 Feature Map Size Calculations.mp4 (3.18 MB)
MP4
06 Preparing and Exploring Image Data.mp4 (7.83 MB)
MP4
07 Setting up a Convolutional Neural Network.mp4 (11.25 MB)
MP4
08 Training a CNN.mp4 (10.25 MB)
MP4
09 Hyperparameter Tuning.mp4 (10.53 MB)
MP4
10 Module Summary.mp4 (2.1 MB)
MP4
1 Module Overview.mp4 (1.59 MB)
MP4
2 Preparing the CIFAR-10 Dataset.mp4 (7.73 MB)
MP4
3 Setting up the CNN.mp4 (6.92 MB)
MP4
4 Training the CNN.mp4 (8.45 MB)
MP4
5 Choosing Different Activation Functions.mp4 (7.7 MB)
MP4
6 Choosing Pooling Layers.mp4 (7.2 MB)
MP4
7 Choosing Convolution Kernel Sizes.mp4 (8.24 MB)
MP4
8 Additional Convolution Layers and Different Kernel Size.mp4 (8.5 MB)
MP4
9 Module Summary.mp4 (1.64 MB)
MP4
1 Module Overview.mp4 (1.81 MB)
MP4
2 Transfer Learning.mp4 (7.72 MB)
MP4
3 Using the Resnet-18 Pretrained Model.mp4 (12.04 MB)
MP4
4 The Train Function to Find the Best Model Weights.mp4 (8.45 MB)
MP4
5 Predictions Using Pretrained Models.mp4 (4.68 MB)
MP4
6 Cleaning up Resources.mp4 (2.25 MB)
MP4
7 Summary and Further Study.mp4 (2.13 MB)
MP4
1 Course Overview.mp4 (3.85 MB)
MP4
01 Version Check.mp4 (554.89 KB)
MP4
02 Module Overview.mp4 (1.83 MB)
MP4
03 Prerequisites and Course Outline.mp4 (2.3 MB)
MP4
04 Content, Style, and Target Images.mp4 (7.26 MB)
MP4
05 Training the Target Image for Style Transfer.mp4 (12.48 MB)
MP4
06 Content Loss.mp4 (6.22 MB)
MP4
07 Style Loss - Cosine Similarity and Dot Products.mp4 (5.37 MB)
MP4
08 Style Loss - Gram Matrix.mp4 (5.75 MB)
MP4
09 Setting up a Deep Learning Virtual Machine.mp4 (11.45 MB)
MP4
10 Using Convolution Filters to Detect Features.mp4 (14.67 MB)
MP4
11 Module Summary.mp4 (1.85 MB)
MP4
1 Module Overview.mp4 (1.82 MB)
MP4
2 Pretrained Models for Style Transfer.mp4 (3.82 MB)
MP4
3 Loading the VGG19 Pretrained Model.mp4 (7.11 MB)
MP4
4 Exploring and Transforming the Content and Style Images.mp4 (14.27 MB)
MP4
5 Extracting Feature Maps from the Content and Style Images.mp4 (7.96 MB)
MP4
6 Calculating the Gram Matrix to Extract Style Information.mp4 (5.89 MB)
MP4
7 Training the Target Image to Perform Style Transfer.mp4 (12.44 MB)
MP4
8 Style Transfer Using AlexNet.mp4 (14.74 MB)
MP4
9 Module Summary.mp4 (1.01 MB)
MP4
01 Module Overview.mp4 (2.06 MB)
MP4
02 Understanding Generative Adversarial Networks (GANs).mp4 (9.46 MB)
MP4
03 Training a GAN.mp4 (4.96 MB)
MP4
04 Understanding the Leaky ReLU Activation Function.mp4 (8.79 MB)
MP4
05 Loading and Exploring the MNIST Handwritten Digit Images.mp4 (9.01 MB)
MP4
06 Setting up the Generator and Discriminator Neural Networks.mp4 (8.3 MB)
MP4
07 Training the Discriminator.mp4 (9.39 MB)
MP4
08 Training the Generator and Generating Fake Images.mp4 (7.97 MB)
MP4
09 Cleaning up Resources.mp4 (2.66 MB)
MP4
10 Summary and Further Study.mp4 (2.59 MB)
MP4
1 Course Overview.mp4 (3.35 MB)
MP4
1 Version Check.mp4 (560.2 KB)
MP4
2 Module Overview.mp4 (1.99 MB)
MP4
3 Prerequisites and Course Outline.mp4 (2.26 MB)
MP4
4 RNNs for Natural Language Processing.mp4 (5.57 MB)
MP4
5 Recurrent Neurons.mp4 (6.8 MB)
MP4
6 Back Propagation through Time.mp4 (7.46 MB)
MP4
7 Coping with Vanishing and Exploding Gradients.mp4 (9.61 MB)
MP4
8 Long Memory Cells.mp4 (10.05 MB)
MP4
9 Module Summary.mp4 (2.23 MB)
MP4
01 Module Overview.mp4 (1.81 MB)
MP4
02 Word Embeddings to Represent Text Data.mp4 (7.27 MB)
MP4
03 Introducing torchtext to Process Text Data.mp4 (3.62 MB)
MP4
04 Feeding Text Data into RNNs.mp4 (5.15 MB)
MP4
05 Setup and Data Cleaning.mp4 (8.15 MB)
MP4
06 Using Torchtext to Process Text Data.mp4 (18.78 MB)
MP4
07 Designing an RNN for Binary Text Classification.mp4 (11.08 MB)
MP4
08 Training the RNN.mp4 (10.96 MB)
MP4
09 Using LSTM Cells and Dropout.mp4 (5.59 MB)
MP4
10 Module Summary.mp4 (1.91 MB)
MP4
1 Module Overview.mp4 (2.05 MB)
MP4
2 Language Prediction Based on Names.mp4 (3.22 MB)
MP4
3 Loading and Cleaning Data.mp4 (14.07 MB)
MP4
4 Helper Functions to One Hot Encode Names.mp4 (6.32 MB)
MP4
5 Designing an RNN for Multiclass Text Classification.mp4 (16.32 MB)
MP4
6 Predicting Language from Names.mp4 (13.01 MB)
MP4
7 Module Summary.mp4 (1.87 MB)
MP4
01 Module Overview.mp4 (2.35 MB)
MP4
02 Numeric Representations of Words.mp4 (4.39 MB)
MP4
03 Word Embeddings Capture Context and Meaning.mp4 (6.44 MB)
MP4
04 Generating Analogies Using GloVe Embeddings.mp4 (16.52 MB)
MP4
05 Multilayer RNNs.mp4 (2.71 MB)
MP4
06 Bidirectional RNNs.mp4 (6.71 MB)
MP4
07 Data Cleaning and Preparation.mp4 (17.63 MB)
MP4
08 Designing a Multilayer Bidirectional RNN.mp4 (11.32 MB)
MP4
09 Performing Sentiment Analysis Using an RNN.mp4 (7.81 MB)
MP4
10 Module Summary.mp4 (1.99 MB)
MP4
01 Module Overview.mp4 (1.96 MB)
MP4
02 Using Sequences and Vectors with RNNs.mp4 (5.44 MB)
MP4
04 Representing Input and Target Sentences.mp4 (2.7 MB)
MP4
05 Teacher Forcing.mp4 (4.96 MB)
MP4
07 Preparing Sentence Pairs.mp4 (10.68 MB)
MP4
08 Designing the Encoder and Decoder.mp4 (10.19 MB)
MP4
10 Translating Sentences.mp4 (9.27 MB)
MP4
11 Summary and Further Study.mp4 (3.16 MB)
MP4
1 Course Overview.mp4 (3.43 MB)
MP4
01 Version Check.mp4 (612.26 KB)
MP4
02 Module Overview.mp4 (2.18 MB)
MP4
03 Prerequisites and Course Outline.mp4 (1.99 MB)
MP4
04 Introducing Transfer Learning.mp4 (7.2 MB)
MP4
06 Categorizing Transfer Learning.mp4 (9.73 MB)
MP4
07 Transfer Learning Scenarios.mp4 (7.92 MB)
MP4
08 Freeze or Fine-tune Layers.mp4 (7.45 MB)
MP4
09 Benefits of Transfer Learning.mp4 (3.66 MB)
MP4
10 Pre-trained Models in PyTorch.mp4 (9.67 MB)
MP4
12 Exploring Pre-trained Models in PyTorch.mp4 (21.1 MB)
MP4
13 Module Summary.mp4 (1.9 MB)
MP4
1 Module Overview.mp4 (2.66 MB)
MP4
8 Fine-tuning Top Layers.mp4 (7.13 MB)
MP4
9 Module Summary.mp4 (1.64 MB)
MP4
1 Module Overview.mp4 (2.34 MB)
MP4
2 Exploring and Loading the Chest X-Ray Dataset.mp4 (10.25 MB)
MP4
3 Training a Model from Scratch.mp4 (10.19 MB)
MP4
4 Exploring and Loading the Natural Images Dataset.mp4 (7.65 MB)
MP4
5 Fine-tuning the Network.mp4 (8.92 MB)
MP4
6 Cleaning up Resources.mp4 (2.54 MB)
MP4
7 Summary and Further Study.mp4 (1.94 MB)
MP4
1 Course Overview.mp4 (4.13 MB)
MP4
01 Version Check.mp4 (575.06 KB)
MP4
02 Prerequisites and Course Outline.mp4 (2.68 MB)
MP4
03 Structural and Predictive Models.mp4 (8 MB)
MP4
04 Demo - Install and Setup Pytorch.mp4 (8.18 MB)
MP4
05 Demo - Preparing Data.mp4 (12.32 MB)
MP4
06 Demo - Building a Simple Neural Network to Perform Regression.mp4 (11.7 MB)
MP4
07 Demo - Exploring the Diamonds Dataset.mp4 (9.54 MB)
MP4
08 Demo - Preparing and Processing Data.mp4 (10.25 MB)
MP4
09 Demo - Building and Training a Regression Model.mp4 (16.7 MB)
MP4
10 Demo - Exploring and Preprocessing Data.mp4 (15.6 MB)
MP4
11 Demo - Defining the Neural Network and Helper Functions.mp4 (12.79 MB)
MP4
1 Text as Sequential Data.mp4 (4.33 MB)
MP4
2 The Recurrent Neuron.mp4 (5.18 MB)
MP4
3 RNN Training and Long Memory Cells.mp4 (8.18 MB)
MP4
4 RNN to Generate Names in Languages.mp4 (4.94 MB)
MP4
5 Demo - Loading and Preparing Training Data.mp4 (11.14 MB)
MP4
6 Demo - Setting up Helper Functions.mp4 (9.87 MB)
MP4
7 Demo - Defining the RNN.mp4 (18.26 MB)
MP4
8 Demo - Training the RNN and Generating Names.mp4 (16.41 MB)
MP4
01 Finding Patterns in Data.mp4 (4.53 MB)
MP4
02 Association Rule Learning.mp4 (3.6 MB)
MP4
03 Clustering.mp4 (4.84 MB)
MP4
04 Content Based Approaches to Recommendations.mp4 (7.14 MB)
MP4
05 Collaborative Filtering.mp4 (5.66 MB)
MP4
06 Nearest Neighborhood.mp4 (4 MB)
MP4
07 Matrix Factorization.mp4 (9.28 MB)
MP4
08 Alternating Least Squares to Estimate the Ratings Matrix.mp4 (5.8 MB)
MP4
09 Evaluation Metrics vs Loss Metrics.mp4 (4.08 MB)
MP4
10 Mean Average Precision @ K.mp4 (11.27 MB)
MP4
11 Demo - Initializing the Ratings Matrix.mp4 (11.56 MB)
MP4
12 Demo - Setting up the Neural Network.mp4 (12.31 MB)
MP4
13 Demo - The Train Helper Function.mp4 (20.3 MB)
MP4
14 Demo - The Evaluate Helper Function.mp4 (6.51 MB)
MP4
16 Summary and Further Study.mp4 (2.12 MB)
MP4
1 Course Overview.mp4 (3.78 MB)
MP4
01 Version Check.mp4 (606.15 KB)
MP4
02 Module Overview.mp4 (2.89 MB)
MP4
03 Prerequisites and Course Outline.mp4 (1.88 MB)
MP4
04 Saving and Loading PyTorch Models.mp4 (10.23 MB)
MP4
05 Building and Training a Classifier Model.mp4 (11.85 MB)
MP4
06 Saving and Loading Models Using torch save().mp4 (16.55 MB)
MP4
07 Saving Model Using the state dict.mp4 (15.29 MB)
MP4
08 Saving and Loading Checkpoints.mp4 (10.08 MB)
MP4
09 Introducing ONNX.mp4 (2.76 MB)
MP4
10 Exporting a Model to ONNX and Loading in Caffe2.mp4 (18.34 MB)
MP4
11 Module Summary.mp4 (1.88 MB)
MP4
1 Module Overview.mp4 (1.67 MB)
MP4
3 Training Using Multiple Processes.mp4 (14.27 MB)
MP4
5 Training on Multiple GPUs.mp4 (12.41 MB)
MP4
6 Module Summary.mp4 (1.69 MB)
MP4
1 Module Overview.mp4 (1.97 MB)
MP4
2 Distributed Training on the Cloud.mp4 (5.48 MB)
MP4
3 Setting up a SageMaker Notebook Instance.mp4 (8.88 MB)
MP4
4 Setting up Training and Test Data Loaders.mp4 (9.46 MB)
MP4
5 Define the Training Function.mp4 (9.4 MB)
MP4
8 Module Summary.mp4 (1.54 MB)
MP4
1 Module Overview.mp4 (1.78 MB)
MP4
2 Exploring Options to Deploy PyTorch Models.mp4 (6.18 MB)
MP4
4 Creating a Flask App to Serve the PyTorch Model.mp4 (10.87 MB)
MP4
5 Using the Model for Prediction.mp4 (4.51 MB)
MP4
6 Installing Docker.mp4 (5.56 MB)
MP4
7 Creating and Using a Clipper Cluster for Prediction.mp4 (17.09 MB)
MP4
9 Summary and Further Study.mp4 (2.01 MB)
MP4

9Jx826Xk_t.jpg


363506399_rg.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
374887060_banner_240-32.png

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
364146951_nitroflare.jpg

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten