Machine Learning Engineering in Action, Video Edition

dkmdkm

U P L O A D E R
af4b3b2f208c70330ad2abce281ac969.jpg

Free Download Machine Learning Engineering in Action, Video Edition
Released 4/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 14h 54m | Size: 2.34 GB
Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from In Machine Learning Engineering in Action, you will learn

Evaluating data science problems to find the most effective solution
Scoping a machine learning project for usage expectations and budget
Process techniques that minimize wasted effort and speed up production
Assessing a project using standardized prototyping work and statistical validation
Choosing the right technologies and tools for your project
Making your codebase more understandable, maintainable, and testable
Automating your troubleshooting and logging practices
Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks.
Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code.
About the Technology
Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production.
About the Book
Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects.
What's Inside
Scoping a machine learning project for usage expectations and budget
Choosing the right technologies for your design
Making your codebase more understandable, maintainable, and testable
Automating your troubleshooting and logging practices
About the Reader
For data scientists who know machine learning and the basics of object-oriented programming.
About the Author
Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project. He is also an MLflow committer.






Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
No Password - Links are Interchangeable
 
Kommentar
471671757_te29fhu6hmi4.jpg


Machine Learning Engineering in Action, Video Edition
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English​
| Duration: 14h 54m | Size: 2.34 GB[/center]

Field-tested tips, tricks, and design patterns for building machine learning projects that are deployable, maintainable, and secure from In Machine Learning Engineering in Action, you will learn

Evaluating data science problems to find the most effective solution
Scoping a machine learning project for usage expectations and budget
Process techniques that minimize wasted effort and speed up production
Assessing a project using standardized prototyping work and statistical validation
Choosing the right technologies and tools for your project
Making your codebase more understandable, maintainable, and testable
Automating your troubleshooting and logging practices

Ferrying a machine learning project from your data science team to your end users is no easy task. Machine Learning Engineering in Action will help you make it simple. Inside, you'll find fantastic advice from veteran industry expert Ben Wilson, Principal Resident Solutions Architect at Databricks.

Ben introduces his personal toolbox of techniques for building deployable and maintainable production machine learning systems. You'll learn the importance of Agile methodologies for fast prototyping and conferring with stakeholders, while developing a new appreciation for the importance of planning. Adopting well-established software development standards will help you deliver better code management, and make it easier to test, scale, and even reuse your machine learning code. Every method is explained in a friendly, peer-to-peer style and illustrated with production-ready source code.

About the Technology
Deliver maximum performance from your models and data. This collection of reproducible techniques will help you build stable data pipelines, efficient application workflows, and maintainable models every time. Based on decades of good software engineering practice, machine learning engineering ensures your ML systems are resilient, adaptable, and perform in production.

About the Book
Machine Learning Engineering in Action teaches you core principles and practices for designing, building, and delivering successful machine learning projects. You'll discover software engineering techniques like conducting experiments on your prototypes and implementing modular design that result in resilient architectures and consistent cross-team communication. Based on the author's extensive experience, every method in this book has been used to solve real-world projects.

What's Inside
Scoping a machine learning project for usage expectations and budget
Choosing the right technologies for your design
Making your codebase more understandable, maintainable, and testable
Automating your troubleshooting and logging practices

About the Reader
For data scientists who know machine learning and the basics of object-oriented programming.

About the Author
Ben Wilson is Principal Resident Solutions Architect at Databricks, where he developed the Databricks Labs AutoML project. He is also an MLflow committer.
471671772_xw4su04ry7mb.jpg

2DqB6bYw_o.jpg


Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten