Free Download Emenwa Global, "Face Detection And Image Processing In Python: Computer Vision In Python"
English | 2022 | ASIN: B0B3Q2VF2Z | 177 pages | EPUB | 3.8 MB
One of the best things about OpenCV is that it comes with a lot of built-in primitives for image processing and computer vision operations. If you have to start from scratch and write something, you will need to define things like an image, a point, a rectangle, and so on. Almost every computer vision algorithm needs these. All of these basic structures are already built into OpenCV. They are all in the core module. Another benefit is that these frameworks are already optimized for speed and memory, so users don't have to bother about the specifics of implementation.
The imgcodecs module is in charge of opening and saving image files. With a simple command, you can save the output image as either a jpg or a png file when you're done with it. When you work with cameras, you will have to deal with a lot of video files. There are different modules that take care of everything that has to do with putting and taking out video files. You can easily record a video from a webcam or read a video file in various formats. You can also set properties like frames per second, frame size, and so on to save a bunch of frames as a video file.
Processes for handling images
When you write a Computer Vision algorithm, you will use a lot of the same basic image processing steps over and over. The imgproc module has most of these functions. You can do things like image filtering, geometric transformations, morphological operations, drawing on images, color conversions, histograms, motion analysis, shape analysis, feature detection, and so on.
In OpenCV, we only need one line to do many of these manipulatinos, as you would see in this OpenCV course.
Code:
Bitte
Anmelden
oder
Registrieren
um Code Inhalt zu sehen!