Deep Learning at Scale At the Intersection of Hardware, Software, and Data (PDF)

booksz

U P L O A D E R
4d85c1fc77d37ad649e52e55ce8b8098.webp

Free Download Deep Learning at Scale: At the Intersection of Hardware, Software, and Data by Suneeta Mall
English | July 30th, 2024 | ISBN: 1098145283 | 448 pages | True PDF | 20.80 MB
Bringing a deep-learning project into production at scale is quite challenging. To successfully scale your project, a foundational understanding of full stack deep learning, including the knowledge that lies at the intersection of hardware, software, data, and algorithms, is required.

This book illustrates complex concepts of full stack deep learning and reinforces them through hands-on exercises to arm you with tools and techniques to scale your project. A scaling effort is only beneficial when it's effective and efficient. To that end, this guide explains the intricate concepts and techniques that will help you scale effectively and efficiently.
You'll gain a thorough understanding of:
* How data flows through the deep-learning network and the role the computation graphs play in building your model
* How accelerated computing speeds up your training and how best you can utilize the resources at your disposal
* How to train your model using distributed training paradigms, i.e., data, model, and pipeline parallelism
* How to leverage PyTorch ecosystems in conjunction with NVIDIA libraries and Triton to scale your model training
* Debugging, monitoring, and investigating the undesirable bottlenecks that slow down your model training
* How to expedite the training lifecycle and streamline your feedback loop to iterate model development
* A set of data tricks and techniques and how to apply them to scale your training model
* How to select the right tools and techniques for your deep-learning project
* Options for managing the compute infrastructure when running at scale




Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Links are Interchangeable - Single Extraction
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten