Building Image Processing Applications Using scikit - image

0dayddl

U P L O A D E R

d381c0cfc3229aa07eeddb0eb782a14d.jpg

Building Image Processing Applications Using scikit-image
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hour 49M | 259 MB
Genre: eLearning | Language: English​

In this course, you'll explore the scikit-image Python library which allows you to apply sophisticated image processing techniques to images and to quickly extract important insights or pre-process images for input to machine learning models.

In this course, Building Image Processing Applications using scikit-image, you'll gain an understanding of a few core image processing techniques and see how these techniques can be implemented using the scikit-image Python library. First, you'll learn the basics of working with image data represented in the form of multidimensional arrays. Next, you'll discover to manipulate images using the NumPy package, extract features using block view and pooling techniques, detect edges and lines and find contours in images. Then, you'll explore various object and feature detection techniques using the DAISY and HOG algorithms to extract image features, along with using morphological reconstruction to fill holes and find peaks in your images. Finally, you'll delve into image processing techniques that allow you to segment similar regions in your images and apply complex transformations by exploring the Regional Adjacency Graph data structure to represent image segments. By the end of this course, you'll have a better understanding of a range of image processing techniques that you can use on your images, and you'll be able to implement all of those using scikit-image.

QCyOT0K7_o.jpg



RapidGator
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
AlfaFile
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
TurboBit
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten