Build A Fire Detection With Ai: Yolo, Fastapi & Next.Js

lesedev317

U P L O A D E R

th_0ekKNC8gtsZdqaK3c3szIR2zjeh1Z0OD.jpg

Build A Fire Detection With Ai: Yolo, Fastapi & Next.Js
Published 2/2025
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 10m | Size: 622 MB
Learn how to set up a real-time fire detection system using YOLO, FastAPI, and Next.js with a hands-on approach.​


What you'll learn
Set up a YOLO-based fire detection system using Python, FastAPI, and Next.js
Train a YOLO model to detect fire from images and videos
Build a FastAPI backend for real-time fire detection and logging
Develop a Next.js frontend to visualize fire detection results in real-time
Implement an alert system using audio notifications for fire detection
Store and retrieve fire detection logs efficiently using a database
Serve static files and integrate an API for handling real-time fire data
Requirements
Basic programming knowledge is recommended but not required.
Familiarity with Python will be helpful.
No prior experience with YOLO, FastAPI, or Next.js is necessary. Everything will be explained from the ground up.
A computer capable of running Python and Node.js.
Description
Description:Kickstart Your AI-Powered Fire Detection System!Want to build a real-time fire detection system without getting lost in complex theory? This course is designed to get you up and running quickly! You'll learn how to set up a YOLO-based fire detection model and integrate it with FastAPI for backend processing and Next.js for a web-based UI.What You'll Learn:Install and configure YOLO for fire detectionSet up a FastAPI backend for real-time fire detectionBuild a Next.js frontend to visualize fire detection resultsImplement an alert system for real-time notificationsStore and retrieve fire detection logs efficientlyLearn how to optimize YOLO models for better performanceDiscover how to deploy your application for real-world usageGain hands-on experience in building AI-driven web applications Who Is This Course For?Developers who want a quick-start template for AI-based fire detectionBeginners with basic Python knowledge looking to work with YOLO, FastAPI & Next.jsMakers and hobbyists who prefer a ready-to-run project over deep theoryEngineers looking for a foundation to expand and customizeStudents and researchers interested in computer vision and AI-powered automation This course is designed to provide a functional fire detection system that you can extend and enhance based on your needs. Get started today!
Who this course is for
Developers who want a quick start with YOLO-based fire detection and plan to build upon it.
Beginners with basic Python knowledge who need a hands-on introduction to YOLO, FastAPI, and Next.js.
Makers and hobbyists who prefer a practical, ready-to-run setup instead of deep theoretical study.
Engineers looking for a foundational project template they can modify and improve creatively.
HomepageScreenshot

Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten