Advanced Crypto strategies for Algorithmic trading 2022

0dayddl

U P L O A D E R

7260aacd10aed5d2f3d5e759e759f6d0.jpg

Advanced Crypto strategies for Algorithmic trading 2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 2.22 GB | Duration: 5h 45m​

Technical analysis, machine learning and risk management for crypto algorithmic strategies. MT5 bots included

What you'll learn
Get data from your broker
Create crypto trading strategies from scratch
Create crypto strategies using Machine Learning
Plot financial data
MT5 live trading using Python
Vectorized Backtesting
Manage financial data using Pandas
Quantify the risk of a strategy
Combine Trading strategies
Understand and implement different drawdown break strategies (risk management)
Manage the risk of the crypto-currencies
Data cleaning using Pandas
Find the best increase of the crypto-currencies to optimize your returns
Requirements
None. You have to be motivated to learn the techniques of quantitative analysts for crypto currencies. That's it!
Description
Do you want to create quantitative CRYPTO strategies to earn up to 79%/YEAR ?

You already have some trading knowledge and you want to learn about quantitative trading/finance?

You are simply a curious person who wants to get into this subject to monetize and diversify your knowledge?

If you answer at least one of these questions, I welcome you to this course. All the applications of the course will be done using Python. However, for beginners in Python, don't panic! There is a FREE python crash course included to master Python.

In this course, you will learn how to use technical analysis and machine learning to create robust crypto strategies. You will perform quantitative analysis to find patterns in the data. Once you will have many profitable strategies, we will learn how to perform vectorized backtesting. Then you will apply risk management techniques to control the volatility in your crypto investment plan.

You will learn and understand crypto quantitative analysis used by portfolio managers and professional traders

Modeling: Technical analysis (Support & resistance, Ichimoku), Machine Learning (Random Forest Classifier).

Backtesting: Do a backtest properly without error and minimize the computation time (Vectorized Backtesting).

Risk management: Manage the drawdown(Drawdown break strategy), combine strategies properly (Crypto strategies portfolio).

Why this course and not another?

This is not a programming course nor a trading course or a machine learning course. It is a course in which statistics, financial theory, and machine learning are used for trading.

This course is not created by a data scientist but by a degree in mathematics and economics specializing in mathematics applied to finance.

You can ask questions or read our quantitative finance articles simply by registering on our free Discord forum.

Without forgetting that the course is satisfied or refunded for 30 days. Don't miss an opportunity to improve your knowledge of this fascinating subject.

Who this course is for
Everyone

1XlTebGC_o.jpg



Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten