A Handbook of Mathematical Models with Python Elevate your machine learning projects with NetworkX, PuLP, and linalg

booksz

U P L O A D E R
6d2cab081bec7c0540de15c15417e346.jpg

Free Download A Handbook of Mathematical Models with Python: Elevate your machine learning projects with NetworkX, PuLP, and linalg by Dr. Ranja Sarkar
English | August 30, 2023 | ISBN: 1804616702 | 144 pages | PDF | 4.23 Mb
Master the art of mathematical modeling through practical examples, use cases, and machine learning techniques

Key FeaturesGain a profound understanding of various mathematical models that can be integrated with machine learningLearn how to implement optimization algorithms to tune machine learning modelsBuild optimal solutions for practical use casesPurchase of the print or Kindle book includes a free PDF eBookBook Description
Mathematical modeling is the art of transforming a business problem into a well-defined mathematical formulation. Its emphasis on interpretability is particularly crucial when deploying a model to support high-stake decisions in sensitive sectors like pharmaceuticals and healthcare.
Through this book, you'll gain a firm grasp of the foundational mathematics underpinning various machine learning algorithms. Equipped with this knowledge, you can modify algorithms to suit your business problem. Starting with the basic theory and concepts of mathematical modeling, you'll explore an array of mathematical tools that will empower you to extract insights and understand the data better, which in turn will aid in making optimal, data-driven decisions. The book allows you to explore mathematical optimization and its wide range of applications, and concludes by highlighting the synergetic value derived from blending mathematical models with machine learning.
Ultimately, you'll be able to apply everything you've learned to choose the most fitting methodologies for the business problems you encounter.
What you will learnUnderstand core concepts of mathematical models and their relevance in solving problemsExplore various approaches to modeling and learning using PythonWork with tested mathematical tools to gather meaningful insightsBlend mathematical modeling with machine learning to find optimal solutions to business problemsOptimize ML models built with business data, apply them to understand their impact on the business, and address critical questionsApply mathematical optimization for data-scarce problems where the objective and constraints are knownWho this book is for
If you are a budding data scientist seeking to augment your journey with mathematics, this book is for you. Researchers and R&D scientists will also be able to harness the concepts covered to their full potential. To make the best use of this book, a background in linear algebra, differential equations, basics of statistics, data types, data structures, and numerical algorithms will be useful.
Table of ContentsIntroduction to Mathematical ModelingMachine Learning vis-à-vis Mathematical ModelingPrincipal Component AnalysisGradient DescentSupport Vector MachineGraph TheoryKalman FilterMarkov ChainExploring Optimization TechniquesOptimization Techniques for Machine Learning


Code:
Bitte Anmelden oder Registrieren um Code Inhalt zu sehen!
Links are Interchangeable - Single Extraction
 
Kommentar

In der Börse ist nur das Erstellen von Download-Angeboten erlaubt! Ignorierst du das, wird dein Beitrag ohne Vorwarnung gelöscht. Ein Eintrag ist offline? Dann nutze bitte den Link  Offline melden . Möchtest du stattdessen etwas zu einem Download schreiben, dann nutze den Link  Kommentieren . Beide Links findest du immer unter jedem Eintrag/Download.

Data-Load.me | Data-Load.ing | Data-Load.to | Data-Load.in

Auf Data-Load.me findest du Links zu kostenlosen Downloads für Filme, Serien, Dokumentationen, Anime, Animation & Zeichentrick, Audio / Musik, Software und Dokumente / Ebooks / Zeitschriften. Wir sind deine Boerse für kostenlose Downloads!

Ist Data-Load legal?

Data-Load ist nicht illegal. Es werden keine zum Download angebotene Inhalte auf den Servern von Data-Load gespeichert.
Oben Unten